Physics-Based Degradation Modelling for Filter Clogging

Omer Faruk Eker, Fatih Camci, and Ian K. Jennions
Submission Type: 
Full Paper
AttachmentSizeTimestamp
phmce_14_010.pdf470.6 KBMay 14, 2014 - 7:04pm

Separation of solids from fluid is a vital process to achieve the desired level of purification in industry. Contaminant filtration is a common process in a variety of applications in industry. Clogging of filter phenomena is the primary failure mode leading to replacement or cleansing of filter. Reduced performance and efficiency or cascading failures are the unfortunate outcomes of a clogged filter. For instance, solid contaminants in fuel may lead to performance reduction in the engine and rapid wear in the fuel pump. This paper presents the development of an experimental rig to collect accelerated filter clogging data and a physics-based degradation model to represent the filter clogging. In the experimental rig, pressure drop across the filter, flow rate, and filter mesh images are acquired during the accelerated clogging experiments. The pressure drop across the filter due to deposition of suspended solids in the liquid is modelled and employed in the degradation modelling. Then, the physics based degradation model simulated using MatLab is compared with the real clogging data and the effectiveness of the degradation model is evaluated.

Publication Year: 
2014
Publication Volume: 
5
Publication Control Number: 
010
Page Count: 
7
Submission Keywords: 
model-based prognostics
Filter Clogging
equipment degradation modeling
Submission Topic Areas: 
Model-based methods for fault detection, diagnostics, and prognosis
Submitted by: 
  
 
 
 

follow us

PHM Society on Facebook Follow PHM Society on Twitter PHM Society on LinkedIn PHM Society RSS News Feed