Global Sensitivity Analysis applied to Model Inversion Problems: A Contribution to Rail Condition Monitoring

René Schenkendorf and Jörn C. Groos
Publication Target: 
IJPHM
Publication Issue: 
Special Issue Uncertainty in PHM
Submission Type: 
Full Paper
AttachmentSizeTimestamp
ijphm_15_019.pdf1.41 MBMay 27, 2015 - 12:02pm

Rising demands on railroad infrastructure operator by means of profitability and punctuality call for advanced concepts of Prognostics and Health Management. Condition based preventive maintenance aims at strengthening the rail mode of transport through an optimized scheduling of maintenance actions based on the actual and prognosticated infrastructure condition, respectively.
When applying model-based algorithms within the framework of Prognostics and Health Management unknown model parameters have to be identified first. Which of these parameters should be known as precisely as possible can be figured out systematically by a sensitivity analysis. A comprehensive global sensitivity analysis, however, might be prohibitive by means of computation load when standard algorithms are implemented. In this study, it is shown how global parameter sensitivities can be calculated efficiently by combining Polynomial Chaos Expansion and Point Estimate Method principles. The proposed framework is demonstrated by a model inversion problem which aims to recalculate the track quality by measurements of the vehicle acceleration, i.e. analyzing the dynamic railway track-vehicle interaction.

Publication Year: 
2015
Publication Volume: 
6
Publication Control Number: 
019
Page Count: 
14
Submission Keywords: 
uncertainty analysis
point estimate method
polynomial chaos expansion
sensitivity analysis
condition based maintenance (CBM)
railway systems
Submission Topic Areas: 
Uncertainty Quantification and Management in PHM
Submitted by: 
  
 
 
 

follow us

PHM Society on Facebook Follow PHM Society on Twitter PHM Society on LinkedIn PHM Society RSS News Feed