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ABSTRACT

In this paper we present a statistical approach to
the estimation of the time in which an operating
gear will achieve the critical stage. The approach
relies on measured vibration signals. From these
signals features are extracted rst and then their
evolution over time is predicted. This is done
owing to the dynamic model that relates hidden
degradation phenomena with measured outputs.
The Expectation-Maximization algorithm is used
to estimate the parameters of the underlying state-
space model on-line. Time to reach safety alarm
threshold is determined by making the prediction
using the estimated linear model. The results ob-
tained on a pilot test bed are presented.

INTRODUCTION

the time of occurrence of the safety alarm (rst pas-
sage time - FPT).

As feature evolution over time is a nonstationary
stochastic process, we focus on an adaptive on-line
tracking of the essential parameters of the dynamic
model that describes the process. In the literature there
are several different techniques available for time-
series predictiofiwanget al., 2003, among them neu-
ral networks and neuro-fuzzy systeffw. Q. Wanga
and Ismailb, 2004 In this paper we assume that the
time series can be viewed as an output of a second or-
der linear, discrete time, stochastic dynamic system.
Because of the progress of faults in gears, the systems
parameters are expected to change in time. For on-
line estimation of model parameters an Expectation-
Maximization (EM) algorithm is used. The EM algo-
rithm is a well established method, which arose in the
mathematical statistics communitpempsteret al.,
1977, but has found wide engineering applications in
different areas. One of the applications is the use of

On-line condition monitoring of rotational machinery the algorithm for estimating state-space model param-
has become an almost indispensable part of modergters in the presence of hidden variables (unmeasured
control and supervision systems. Due to almost fOUfstatesXGibson and Ninness, 20D5
decades of development of the underlying methodolo-"co it hrognosis techniques developed so far can be
g'ﬁs theoelttjhls btﬁ“e‘;]ed Ejo have rea(;h(tar(]j the ma;‘cur'tyroughly%iv%ed into thre?e different cplasses: (1) ex-
phase. On the other hand, progress in the area of prog; % ;
nosis of the machine condition is relatively recent so%-l%tsl?c%?ﬁqpoﬂgrse;ﬁ (rg;) ggg’ éﬁ)\/gm;%%%ri\gjé)sased on
tlhgaéglgrthof\évqr_k ha]lcs to be dﬁnel')n the futlﬁkﬁ)ward, ¢ Inthe rst case, the models of the componeﬁts are
. The driving force is the obvious importance o . ; ’ .

accurate predictions of fault propagation. This aIIows%ﬁ'g?lg(ggﬁ'%g%?a%:@pgxz %ndlggg{de.‘lfﬁg 82;6@96
Lorirtiiﬁr;?a‘cé?mg well before the machine reaches th ying models typically take the form of the probability

' aws, which describe the probability for the occurence

In this paper we present a data driven approach t : -
gear health monitoring and prognosis. We employ f failure. Generally, such an approach is costly and

vibration signals and their processing by means Ofapphcable fo a speci ¢ class of systems components.
Hilbert transform (HTYRubini and Meneghetti, 2001; !N the second class of the approaches the damage
Ho and Randall, 2000 Components from Hilbert model of the component is derived from either physi-
spectrum are used as fault indicators (or features). The@l of semi-physical model in the form of state-space
sequence of features can be viewed as a time series | gl0dels. These models are further enhanced with the
a realization of the stochastic process, which is tightly!@luré propagation entries in terms of deterministic
related to the condition of the gear. The objective ofOr Stochastic states. Unknown parameters can be ob-
this work is to extend feature extraction with the pre- t&ined by means of the stochastic ltering approaches
diction of the feature time series in order to estimate(Orchard and Vachtsevanos, 2009

The third category is least demanding in terms of
This is an open-access article distributed under the termgrior knowledge. Actually these approaches rely on a
of the Creative Commons Attribution 3.0 United States Li- set of features, which correlate with the failure evolu-
cense, which permits unrestricted use, distribution, @&d r tion over time. The time-to-failure can be estimated
production in any medium, provided the original author and from the operating data provided an appropriate train-
source are credited. ing process has been conducted rst. The key enabler



in these approaches is time series prediction which caand rotational speed of output shaff = 24:75Hz.

be solved in many wayfW. Q. Wanga and Ismailb, The signals were sampled with sampling frequency

2004),(G. Niu, 2009. According to this segmentation, fs = 80kHz. Each acquisition session lasted for 5 sec-

our approach can be placed in the last category. onds. The acquisition was repeated every 10 minutes
The outline of the paper is as follows. Chapter 2 as illustrated in Figure 3.

will present the experimental setup used for this study

along with the experimental protocol and feature ex- Ssec. 10min. Ssec.

traction. Chapter 3 will describe the stochastic time se-

ries properties and prediction along with the EM algo-

rithm for model parameter estimation. Results of pre-

diction using the data from the test bed are presente

in Chapter 4.
2 THE EXPERIMENTAL SET-UP — ——
The experimental test bed consists of a motor- i ¢

generator pair with a single stage gearbox (Fig. 1).

The motor is a standard DC motor powered through ~ Ssi°nk session k1
a Simoreg DC drive. A generator is being used as a l

break. The generated power is being fed back in the

system, thus achieving the breaking force. y(K) y(k+1)

Figure 3: The concept of signal acquisition

In order to speed up the experiment, the contact sur-
face between the gears was decreased to 1/3 of the
original surface. In this manner the fault evolution
horizon is made shorter. The displacement is shown
in Fig. 4.

The overall experiment run took 65 hours. At the
end both gears were heavily damaged i.e. on both
gears spalling can be seen on all teeth, which pro-
gressed even into a plastic deformation of some of
them, as shown in Fig. 4.

2.2 Feature extraction

Signals from all 8 sensors were acquired simulta-
Figure 1: The test bed neously. These signals acquired at each acquisi-
tion session, were analyzed using envelope analysis

The test bed is equipped with 8 accelerometers(H0 and Randall, 2090 From each sensos 2

The mounting position and sensitivity axis of each ac- S1; __; Ssg, at each acquisition sessidr a feature
celerometer are shown in Figure 2. vector[ys; 1(k); ys 2(K); 3 Ysm (k)] was derived,
wherem is the total number of extracted features.
Jib6 Each element of the feature set represents the value of
P the amplitude of speci c spectral component from the
vib i f envelope spectrum for the particular sengor
vib3 |
. J 3 STOCHASTIC TIME SERIES PREDICTION
Generator . .
Gearbo ; 3.1 State space model of time series

State-space representation is a very general model, that
Figure 2: Vibration sensors placement scheme ~ ¢an describe a whole set of different models. In our
case we assume that condition of the machine is a dy-
The placment of the sensor determines its sensitil@MIC process in uenced by random tribological in-

: At uts which occur due to the impact between moving
ty for incresed vibrations caused by the degrated geargurfaces. Condition can be viewed as a random pro-

Egglr:hdbl—grevgtljgihnessérfsegrzltlggyl [nBO:rzde\zggnvrvnhei Qrt] haScess, which can be described by a state space model:

measure the vibrations on gearbox output and input
shafts respectively. Xis1 = F(Xe; Wy );

2.1 The experimental protocol Y= o(Xt;e; ) 1)

The test run was done with a constant torque of wherey; is a measured data (i.e. the output of the
82.5Nm and constant speed of 990rpm. This speed ofibration sensor)x; an unmeasured system statg,
990rpm generates gear mesh frequency (GMF) = is an i.i.d. random process, measurement noise and
396Hz, rotational speed of input shdft = 16:5Hz, model parameters.



of is known asmaximum likelihood (ML) estimate
Usually, the log-likelihood function of the parameters
is de ned as,

LC ) =In p(YjX; ), ®)

where X = [Xg1;X2;:::;Xn]. Sinceln(x) is a
strictly increasing function, the value of that max-
imizesp(Y jX; ) also maximizes ( ).

kw1 =argmax Exjy.  fInp(Y;xj )g (4)

EM algorithm is an iterative procedure for maximiz-
ing L( ), meaning that aftek™ iteration, we obtain
the estimate for , denoted by .

The advantage of the algorithm is, that it can also
operate when system states) @re not known. Be-
cause the output is dependant on the unobserved sys-
tem states, direct maximization is not possible. The
EM algorithm alternates between two steps, rst max-
imizing the likelihood function with respect to the sys-
tem states (E-step) and than with respect to the param-
eters (M-step).

(a) Output gear

E-step
Given an estimete of the parameter values
k = fAQ;C;R;X0;Qo0), the Rauch-Tung-
Striebel (RTS) smoother provides an optimum
(b) Input gear estimate of the unobserved state sequexep @f a
state space model (2). In dynamical systems with

Figure 4: Output and input gear at the end of the exnidden states the E-step corresponds directly to

periment (notice heavily pitted teeth) solving the smoothing problem. .
In other words, for any timewe would like to com-
pute
1
| SENSORS. Y, p(xijy1T) (5)

TESTRIG Y,  smoother procedure is as follows:

First, Kalman lter is applied to the observable
data in a forward mannet € 1;2;:::;n), start-
ing with initial estimate of the state mean and

For practical use, the expression (1) can be in many ~ VaranceXo; o).
cases Slmp|l ed and transformed into linear form. The Recursive smoother is app“ed in a backward

resulting model is described as manner{ = n;n 1;::::1), taking the Itered
state estimate at timeas initial condition.

Figure 5: Feature extraction procedure

Xt+1 = AX g+ Wi Summary of the algorithm is given in Table 1.
yi = CX¢ + &; (2)
N M-step
We assume that the system starts with initial vectora ¢ stated above. the vector of unknown system param-

Xo With mean o and covariance matrix o. ; e i
The observed system output data, indexed by timeeters in the case of state space model is given as

, which represent the time series we wish to ana-
|())//Zt)e or predictr_) = fA. Q- C. R. Xo; QOg (6)
If the system states can be observed in addition to

3.2 EM algorithm for dynamic state-space system outputs, the joint pdf can be written as

system estimation

Expectation-Maximization is applied as an iterative p(Yj ) = pYjX; )pXj )
method to estimate a vector of unknown parameters
(), given measurementdatéd & fyi;y2;:::;¥Yn0). Assuming Gaussian distributions and ignoring the

In other words, we wish to nd the set of parameters constants, the complete data log-likelihood can be
, such thatp(Yj ) is a maximum. This estimate written as



Table 1: RTS smoother algorithm

Forward lter

[nitialization
Xo = Xo
Po = Po

ComputationFort =1;2;:::;n

X1 jt = AXyj

t

Piiije = APtthT +Q
Ki=Pu13iC"(CPuy;CT +R) !
Xpstjeer = Xertje ¥ Kie(Yisr CXiaajt)
Pistjier = Praaje

Backward lter

K{CP 11t

ComputationForT = n;n 1;:::;1

Ji=PATP ]

t+1 jt

X1 = Xejo + Jt(Kewz T Xewtjt)
Ji(Pesrjt Praaji)df

Pijr = Py

2InL( ) In j

+ (xt Ax¢ 1)Q (x¢ Axy 1)
t=1

+ ninjRj

+ (i Cx)R Yyt Cxy) (7)
t=1

wherexo  N( o;

0
Exjva:  (XeX{)

0
Exiva:  (XeXg

0
Exjva: (Xt 1Xg

o +(xo 0)° o'(Xo o)
+ ninjQj

X
Siu = xPxP0+ po (14)
t=1
S0 = xPx? %+ PR (15)
t=1
Soo = X{ 1 X¢ 10"' Py 1 (16)
t=1
X0
Sy, = E(yiy)) = (yiyd) (17)
t=1 t=1
X0
S = yixPo (18)

Our goal is to nd the maximum of the
function I( j ) with respect to parameters
A;C;Q;R;Xp; o. Calculating derivatives of the
Eqg. (13) with respect to all parameters we obtain the
following result

A =SSy (19)
Q = n 'S S10SySh (20)
C = SpS,;; (21)
R = n?! Sy S,0S,1S% (22)
Xo = Xg (23)
Qo = Pg (24)

Both E and M steps are iterated until the increase in

_ ; 0). Taking the expected value the likelihood at the current time step, compared to the
of the expression with respect to the current parameteprevious one, is greater than the selected threshold.
estimatd ) and complete observed datg,

IC J =Ef 2InL( )iYn; «g (8)
Using the results from RTS smoother equations:

1)
1)

Exjv.; (X)) =

and taking expectation over the expression (7) yield

ICj W=

Inj o

ninjQj
tr Q 1fSpy
ninjRj
tr R 1S,

+ + 4+ + +

where

tr ot (PS+(xo"

x{x{%+ Py (9)
x{x{ 1%+ Pl (10)
x{ oxf %+ PT (L)
X{ (12)

0)(Xo"  0)9

S10A% ASY, + ASpA%

S,C°

CSY, + CS1:.C%
(13)

Time series prediction
With known model parameters, predicting the future
values of the time series is straightforward. We start at
the time of the last measure, with the Iter estimate of
the state vector distributionXjn, Pnjn), wheren is
the time index of the last measured sample.

At every future time step> n , the mean and vari-
ance of the output vectgr, can be calculated analyti-
cally.

4 EXPERIMENTAL RESULTS

The algorithm has been used to predict rst passage
Yime in the setup as described in section 2. Each fea-
ture is represented by a time series of 390 samples.
The goal is to use the algorithm for online prognosis,
which is done in the following way.

At time t, we estimate the parameters of the under-
lying stochastic model (Eq. 2) based on data window
Yt Nw+1): t» WhereNw is window length. As the con-
dition of the machine will change over time, the values
of the model parameters will change as well. Model
parameters will determine the trend in the feature val-
ues, while noise covariance parameters comprise the
in uence of the varying noise component (which in-
creases as the damage progresses).

The estimated model, obtained from each time win-
dow is used to predict future behavior, that is time



wheny(T) crosses the alarm valye i.e. y(T) vy
for the rsttime.

The alarm valug has been set to valug®00and
1100for feature values o¥ib8 andvib3 respectively,
which corresponds to the time &0 hours after the
start of the experiment.

15000

10000 -

5000 -~

Feature values time series

20 25 30 35 40 45 50 55 60 65
Time [h]

4.1 Model structure

I
o
@

The underlying model is assumed to be of the follow- £ - ' ]
ing form: , o : \
Xi(t+1) = apXg(t)+ axxa(t) + wi(t) [ 240 B0 om0 g8 s w0 s
Xa(t+1) = agpXa(t) + wa(t) o
yt) = cxa(t)+ et) (25)

or in matrix state-space form

Diagonal elements of Q
@

)

20 25 30 35 40 45 50 55 60 65
Time [h]

Xt+1 = AXt + Wy;
yi = Cx¢ + e (26)

It is important to note, that the system stateyif
this model do not directly correspond to state of ma-
chine or gear health or have any physical meaning. The
system states serve only to describe the dynamical bqé
haviour of the feature values.

Figure 6: Values of the estimated parameters

Up to 40 hours of operation, it can be seen that the
ature values are relatively small and there is no trend
present. Consequently, the estimated system turns to
4.2 Online tracking of model parameters be stable (eigenvalue less than 1). However, when the
Whenever a new measurement is obtained. the al feature values start to increase, the system eigenvalues
rithm estimates model parameters using the last 1% ecome greater than one. The increase in system noise
samples. Initial parameters of the model are set to th arameters Corresponds 1o stronger noise component
: resent in the signal, which can be clearly seen from

following values: time series (between 40 and 65 hours).

A = 4.3 Prediction of the rst passage time
The goal of our prediction is to determine the time, at
) which the feature will exceed the critical value. Our
' approach goes the following way. At a given data ac-
quisition sessiont§, model parameters are estimated
] using windowed datay(; nw +1): t)- Based on the es-
timated model, a Monte-Carlo simulation of the future
feature trend is repeatddO0times. Each simulation
run results in a realization of the FPT. Based on all re-
alizations a probability density function for the FPT is
0 . calculated, in particular its rst and second moment.
1 The results obtained for the feature that corresponds
to the gear-frequency of the envelope spectrum of the
(27)  vibration sensor (Figure 7).

Convergence of the EM procedure is achieved when It can be seen, that the rst estimates of the FPT's
the relative increase of the log likelihood function is are made around 20 hours before the feature actually
less tharl0 4. achieves the critical value. The estimation variance

The algorithm has been rst tested on the time se-gradually decreases and 15 hours before the actual FPT

ries corresponding to the 8th vibration sensor measurdh® uncertainty of the predicted FPT's falls in the range
ments (c.f.vib8in Figure 2), which measures the vi- 2hours.
brations inz direction on the output shaft. Because The validation of the concepthas been performedon
of the gear p|acement, the impacts between gear teeth dlffe_ren_t tlm_e series, in this case 3rd \(lbratlon sensor
are causing the strongest vibrations in this direction(c.f. vib3in Figure 2), the results of which are shown
therefore the feature values from this particular sensoin Figure 8.
are expected to be the most informative about the gear Again, the mean predicted time is approximately the
health. same as the true time as early as 20 hours in advance.
Figure 6 shows the measured time series, the rstDue to higher noise variance in this time series, the
eigenvalue of the estimated matAxand diagonal el-  variance of the predicted FPT is greater and is approx-
ements of the estimated noise covariance m&rix imately 10hours.
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Figure 7: Results of MC analysis usini8 sensor
data
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Figure 8: Results of MC analysis usini3 sensor
data

5 CONCLUSION

It has been shown that the dynamic behavior of the vi-

bration feature value can be approximated as the out-
put of a second order dynamic linear stochastic state
space model. Model parameters have been estimated

with respect to hidden states and to unknown parame-
ters. The results show, that the model obtained in this
way can effectively predict the future behavior of the
feature and can therefore be used to predict the time of
safety alarm. From current experiments, we estimate
that using this method, the accurate prediction can be
made 15 to 20 hours in advance. This offers the ma-
chine operators or maintenance a reasonable amount
of time to replace the gear system without causing un-
necessary production downtime.

In this stage, our algorithm has only been tested in
the case of constant load. In real application, it is com-
mon that the load as well as rounds per minute are
changing in time. Next step in the development of the
procedure is to modify the algorithm so that it will in-
clude these as a measured system input. There are also
several other issues that will have to be addressed for
this approach to be used in industrial applications. One
is the selection of the reference feature values, where
the algorithm signals the alarm. Because there is no di-
rect relation between our system states and the state of
gear health, the alarm values for each setup will have to
be determined experimentaly and in cooperation with
system operators.
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