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ABSTRACT industriesCompany profit and competitiveness depend on
esigning and producing highly reliable systems and/or
ood quality products However, designing such
ophisticated systems bringboutmany difficulties and
concernssuch as component maintenance caistng with

its merits.For industry, an important issue is how to reduce
maintenance cost and manage bussneaisks while
increasing asset reliabilitgvailability, and safety. Hence
there is a neetb designand develop sophisticated health
assessmertechnologies such as PHMwhich are easily
implementable bynaintenancéechnicians or engineets
improvecomponent reliabilityand safety

In literature, prognostics and health management (PHM
systens have been studied by many researchers from man
different engineering fields to increase system reliability,
availability, safety and to redut¢be maintenanceost of
engineering assets. Manworks conductedin PHM
research concentraten designing robust andccurate
models to assesthe health state of components for
particular applications to support decision makiMgdels
which involve mathematicalinterpretations asaimptions
and approximationsnake PHM hard to understand and
implement in real world apptations especially by
maintenance practitioners in industry. Prior knowledge torhePrognostics anHealthManagement (PHMiscipline
implement PHM in complex systems is cruciabtalding providesfor viewing overall health state of machines or
highly reliable systems. Tolffi this gap and motivate complex systemand assists making correctlecisions on
industry practitioners, this paper attempts to provéde machine maintenanc&he main duties of PHM technology
compréhensive review on PHMdomain and discusses are to detect incipient component or system fault, perform
important  issues  on uncertainty quantification, failure diagnostics, failure prognostics, and health
implementation aspectext toprognostics feature and tool management. There are three main issues to be considered
evaluation In this paper,PHM implementationsteps when building a robust PHMan estimation of current
consistof; (1) critical component analysis,)@ppropriate  health state, prediction affuture statealong withtime to
sensor selectionfor condition monitoring (CM), (3) f ai | , and determination of
prognostics featurevaluationunder data analysand (4) performance of a systerfor practitioners, to select and
prognostics methodology andtool evaluationmatrices implementPHM technologyis based on their ability and
derived from PHM literature Besides PHM knowledge about PHM approachestoodls, etc. Models
implementation aspects, this paper alseiews previous which involve mathematical interpretations, assumptions
and ongoing research in highpeed train bogies to and approximationsnake PHM hard to understand and
highlight problems faced in train industry and emphasizeapply. Prior knowledge to implement PHM in complex
the significanceof PHM for further investigations systems is crucial touilding highly reliable systems.

The goal 6 this current review paper is to serve as a
handbook for practitioners in industry to motivate and
Reliability, availability, safety and maintenance costassist them through PHM implementation and help them to
effectiveness have been an important concern in mangccomplish their duty more easily. In this paper, a-fep
maintenance assessment approach isigaed which
Vepa Atamuradowet al. This is an opeaccess article distributed under consistsof (1) critical component anaIySIS’ (2) rlght sensor

terms of the Creative CommoAttribution 3.0 United States License, wh  Selection for CM, (3) prognostics feature evaluation and (4)
permits unrestricted use, distribution, and reproduction in any me prognostics methodology and tool evaluation matrices

provided the original author and source are credited. derived from PHMapproachegresented in théterature

1. INTRODUCTION
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Besides PHMapproaches literature review and proposecdof wind turbines Authors analyzed different CM data for
anapproachthis paper also reviews previous aneégming  bearing and gearbox diagnostics and concluded that
research in higlspeed train bogies to highlight the vibration signal was better in gearbox fault detection and
problems faced in the railway industry and to emphasizacoustic emission for bearing fault detection. Furthermore,
the significanceof PHM for further investigions. There  CBM basedn RCM as an ideal maintenance strate@s

are several review papeirs literatureconducted infault ~ suggestedor farmlevel wind turbine health assessment.
diagnostics and prognostics techniques. Condition Base@uillén et al.(2013 studied PHM integration framework
Maintenance (CBM), which is one of tirequentlystudied main topics regarding monitoring and diagnostics
and applied maintenance techniques in many engineerirtgchniques by synthesizing PHM review papers in different
applications, was reviewed i@ardne, Lin, & Banjevic, application areas. Thetheydiscussed PHM functility,
2006) Authorsstudiedimplementation issues of CBM for maintenance types, prognostics approachespanposed
mechanical systemsand reviewed diagnostics and theintegrationof PHM with emaintenance for proactive
prognostics developments, dgieeprocessing algorithms decision making. State of the art of PHM for nuclear power
and data fusion techniques the literature Rotating plants (NNP)was presented ifCobleet al.2015) where
machinery prognstics articles were reviewed and they reviewed prognostics and maintenance techniques for
synthesized i (Heng, Zhang, Tan, & Mathew, 2009) active and passive NNP componems. Kim, and Choi
Failure prediction methodologies for rotating machinery(2015) reviewed a datadriven and physicbased
were classified as reliability models, condition based anghrognostics algorithms in termsf model definition,
integrated modelswith their merits and drawbacks parameteestimationrobustness in noise and bias handling
Sikorska and M. Hodkiewiczb (2011) reviewed RUL in CM data to provide practical prognostics options for
estimation and prognosticsiodeling approaches under beginnersKan, Tan,and Mathew (2015 reviewed data
knowledgebased, life expectancy, artificial neural driven prognostics techniques for nlmear and non
networks (ANN) and physics modelauthors presented stationary machine processe§.he authors studied
prognostics models with their limitations and merits andprognostics techniques that can cope with-lnogarity and
discussed an appropriate debd selection for business nonstationarity and concluded with furthenprovements
cases. J. Lee et al. 2014) presented comprehensive in prognostics In (Rezvanizaniani, Liu, Ben, & Lee,
review, conducting in PHM of rotatory machinery and 2014)authors reviewed a techniques for the battery PHM
introduceda 5S systematic methodology for PHM design approaches to provide cost effective solutions for battery
which was evaluated in different industrial case studieshealth assessmerfhese reviewed papers can be used to
Kandukuri et al. 2016) reviewed diagnostics and understand the general concepts of systemI@Nablel,
prognostics methodologies under reliabilityentered we have summarizeéchportantissues and remarks pointed
maintenance (RCM) and CBM for two critical out bythereview papers synthesizémm theliterature
components; planetary gearboxes and-$peed bearings

Authors Domain Approach Classification Issues & Remarks

Jardine et al. (216) Mechanical 1 Physicsbased 9 Lack of communication between scientis
9 Datadriven and industry practitioners
q 1 Lack of data collection and efficient

approach validation

1 Implementation difficulty due to rapid
change of technology design and
management exatives

Heng et al. (2009) Mechanical 1 Physicsbased 1 Integration of CM with event data (ED)

9 Datadriven 1 Proper usage of incomplete data

1 Maintenance action effects

1 Machine operating conditions

1 Analysis of nonlinearity between
condition monitoring data and componer
health state

9 Consideration of different failure
interactions

1 Practical requirements and assumptions

1 Developing uniform health measuremen

framework
Sikorska et al. (2011) | Mechanical 1 Knowledgebased 1 Prediction requirements; the goal of RUL
9 Life expectancy prediction
9 Physicsbased 9 Modelprocess compatibility;
compatibility of themodelwith thereal
world.
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9 Resource requirements; availability of
resources to undertake thmdeling(data,
skills/experience)

1 Approach readiness; proof of model
reliability.

Lee et al. (2014)

Mechanical

1 Physicsbased
9 Datadriven
9 Hybrid

1 Statedmportance of maintenance strate(
transformation from faibndfix to the
predictandpreventmethodology.

9 PHM was treated as evolved form of
CBM.

9 Future trends of PHM were concludasl
selfmaintenance, resiliesystemsand
engineering immune system.

Kandukuri et al. (2016)

Renewable energy

q Datadriven

9 Suggested CBM based RCM as an idea
maintenance strategy for wind turbine

1 Concluded that vibration signal was bett
in gearbox fault detection and acoustic
emission for bearing fauttetection

Guillénet al. (2013)

Mechanical

1 Physicsbased
1 Datadriven
1 Hybrid

1 Integration of PHM with
e-maintenance for proactive decision
making was emphasized.

Coble et al. (2015)

Nuclear plants

1 Physicsbased
9 Datadriven

Authors stated followings for detecting anc
managing degradation of reactor
components;

1 Developing nordestructive measuremen
methods and analysis for anomaly
detection,

1 Developing monitoring algorithms for
component degradation

1 Developing prognostic®ols for RUL
estimation.

An et al. (2015)

Mechanical

9 Physicsbased
9 Datadriven

9 Model definition

9 Parameter estimation

1 Robustness in noise and bias handling il
CM data was studied to provide practica
solutions for machinerpgnostics

Kan et al. (2015)

Mechanical

1 Modetbased
9 Datadriven
9 Combination models

9 Lack of runto-failure historical data

fl mproving prognost
feasibility with minimum uncertainty

9 Good model validation establishment an
simplification of techniques for redéiime
prognostics

1 Developing global prognostics technique
ranking system to compare their
performances for all kind ahachinery

Rezvanizaniani et al

(2014)

Electrical

1 Modetbased
9 Datadriven
9 Fusionmodels

9 Compared different approach drawback

1 The main challenges imattery health
management were summarized as
uncertainty in mobility, durability and
safety

The paper is organized as follows:Section 2, PHMmain
tasksare explainedo introduce general ideolog$ection

Tablel. Main issues & remarks studieg review papern literature

2. PHM MAIN TASKS

3 presentd®HM implementation challenges and/or issuesin this section PHM implementation stepare discussed
Systemlevelbased®HM is presented in Section 8ection  and explained in detail to instruct practitioners and make
5 presents uncertainty quantification. Sectiome@iews them familiar with PHMinfrastructure Steps involve data
componettlevel PHM approaches argtognostics tools  acquisition, dat@reprocessinggdetection, diagnostics and
Bogie component diagnostics and prognostics techniqugsrognostics, decision making and finahymanmachine
are reviewed inSedion 7. Section 8contains PHM interface. PHM steps are depictedFig. 1. Each step will
implementatiorstepsfor industryandSection 9concludes  be explained in the following subsections

the paper
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Fig. 1. PHM steps

technques (e.g. Fourier transform, envelop analysis etc.)
transform thedata into frequency domain amade used to
Data acquisition is amitial and essential step of PHM detect and identify a faults whiettenot possible by time
which is known as procesof data collection and storage domain based technique¥he timefrequency domain
from physical component/system under investigation folbased techniques (e.g. Fourigrisform, envelop analysis
further diagnostics and prognostics purposes. Collectegic. HilbertHuang transform, WigneYille distribution
data could be either sensory dateevent dataED). The  etc.) analyze the data in both time and frequency domains.
ED include the information of maintenance actions (e.g. oiFeature evaluation and selection process is the second
change, repairs etc.) taken on the events (e.g. failurgmportant step of data analysis after extraction. A feature
breakdown, installation etc.) that happened to the physic@valuation can be defined as a feature goodness
componentCM or sensory data are measurements trackeguantification process in feature selection. There are
via installed senserfrom asset under investigatiosuch  different techniques used to quantify the feature goodness
as; acoustic emission datvibration data, temperature, (i.e. degradation trend) such as monotonicity,
pressure, hmidity, resistance, voltagegtc. Where ED  prognosability and trendabilitid. Coble & Hines, 2009)
includesevents performed by maintenance technician, sucffhe best features, which haviear degradation trend, are
as corrective maintenance, asset repainsstallation, further selected in a feature selection process after
breakdowncleaningand oilingon the component/system. evaluation(Kimotho & Sextro, 2014)More information
Data @quisition process is depicted Fig. 2 for arailway  on feature extraction techniques can be foun(Bimarma
point machineexample ISO definition for data acquisition & Parey, 2016; Zhu, Nostrand, Spiegel, & Morton, 2014)
can be found ifISO 133741:2003, n.d.) articles.

2.1 Data Acquisition

Electric control

% Hydrgulic
_ unit

2.2 DataPreprocessing * Electric motor

Mcchanic&

Data peprocessing involves data cleaning and data
analysis steps. Cleaning errors/noise from raw data
increases the chance gétting erroffree data for further
investigations. Data analysis, which is the second step of
data preprocessing, involves feature extraction, feature
evaluation and selection processes. Cleasedsorytime
series should undergo a feature extraction process to extract;”|
only the important and useful features that reflect system |
health state being monitored. Extracted features should !
indicate the failure progression of the systdine feature '
extraction tehniques are categorized as tidwmmain
based, frequenecgased and timé&equency based
techniques in the literatu(@ardine eal., 2006) The time
domain basetkeatureextraction technique®.g. root mean
square, kurtosis etc.are used to analyze the global
characteristics of data and to extract featuresin time Fig. 2. Data acquisition process for railway point
domain The frequencydomain based feature extraction machine

—a
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Data Analysis

AN

Fig. 3. Datapreprocessingprocedure

An accurate prediction of remainingefutlife (RUL) of
assets depends avell evaluated and select@idognostic
features. Overall dataggrocessing procedure is depicted
in Fig. 3. ISO definition for data preprocessing can be
found in(ISO 133741:2003, n.d.)

2.3 Detection

There are many faars that cause system components to
degradeover time, losing their initial performance, and
which therefore need to be considered in detection
modeling Health state detection is the process of detecting
and recognizing incipient failures and/or anonmlirom

CM data. A fault detection is typically based on the
guantification of the inconsistencies between the actual and

Feature 2

- i Feature

' Raw Data ' Dat? Featu.re Evaluation Best .

o Cleaning Extraction and prognostics
— . A Selection features

Feature 1

Fig. 5. Feature health state transitions.

the expected behavior of the system in nominal conditiongransitions for slowly propagating failures (heatfaylty-
Fig. 4illustrates failure propagation of component based ofgjled) and for sudden failures (healifailed). 1SO

CM data.

In Fig. 4, a component CNhdicator increasewith timeas
the component degradess illustrated inthe figure, the
evolution of the healthstate ofthe componentcan be
divided into 3 phasesPhasel (To <Ti) where the
component is ig healthystate Phase2 (T:< T») where the
component is im faulty state,Phase3 (T.<) where the
component is irthe completelyfailed state.Predefining

definition for fault detection can be found (SO 13374
1:2003, n.d.)

2.4  Diagnostics

Fault diagnostics is a process of fault detection, isolation
(i.e. which component is failed), failure mode identification

(i.e. what is the cause of failure or fault) and degradation
level assessment (i.e. quantification of the failure severity)

thresholds (Tand T) is very challenging, which needs in condifon monitoring. Diagnosticscan beconducted
seriousexperience for practitioners. Historical CM data canwhen a machineis either in complete failure state or in
be also used to compare and set new thresholds for the safaglty state. Fig. 6 illustrates the posmortem fault

type of components.

Tim®-failure estimation is

diagnostics for failed componeriDiagnostics results can

performed in Phas2 after the detection process wherebe used for reactive as well as proactive decision making
maintenance activities are plannedséxh on estimated (the latter when diagnosing a degradechdition, as
time-to-failure. Therefore, early detection of componentopposed to a complete failurdsO definition for fault

failure is importantFig.5i | | ustr ates
Failure @
T, |-
c
S
g @)
Y
& Incipient failure
a T detection ~
Threshold A O
To

Time

Fig. 4. Component failure propagation.

f e adiagnbsécs éan be €oand s 133722012, n.d.)

2.5 Prognostics

Prognostics is defined as theocesof predicting the time
(RUL) at which a component will no longer perform a
partiaular functionand itis illustratedn Fig. 7. Prognostics
results are used to support proactive decision makit.
definition for fault prognostics can be foundiSO 13381
1:2005, n.d.)

As illustrated in two examplesFig. 6 and Fig. 7),
prognostics serves as prevention of system from possible
failures by predicting future states while diagnosiis



concerned with faultsolaion and classification process.
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Prognostics andiagnostics difference is depictedriy. 8.
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2.6  DecisionMaking

Decision making is a process resulting in the selection of
logical and/or right maintenance action among several
alternatives. Maintenance technician must evaluate the
negatives and positives of each actibased on the
diagnostics or prognostics result$o make effective
decisions, théechniciaralso should be able to estimate the
outcomes of each alternative as wéBO definition for
decision making can be fourd (ISO 133741:2003, n.d.)

Outcomes of decisions could be either operational or
design based. Decisions made opmagtional actions could

be maintenance interventions, hardware/software
reconfigurations and fault tolerant control (FTC). Design
based outcomes could be adding and/or replacing sensors
observability and redesign and/or components placement.
Decisionmaking process is illustrated iRig. 9.

2.7 Human-Machine Interface

Humanmachine interface is Graphical User Interface
(GUI) which is used to visualize component healthustat

to execute tasks, to analyze data and to control the
maintenance operations.

3. PHM CHALLENGES

This section will summarize general and step based
challenges of PHM. PHM and its implementation iseay
challenging task that requires several aspects id fare
further investigation before applying it reliably in real
applications. Hence, it is important to develop
sophisticated reliable degradation models for the accurate
estimation and prediction of its evolutioBafetycritical
systems such as; automaj train, nuclear, chemical and
aerospace industries, et smart predictive maintenance
systems with very high reliability due to potential
caastrophic failure consequencéue to this, smart and
reliable PHM technology development is urgent to cope
with maintenance optimization tasks of critical complex
systems efficiently. Thus, developed PHM system should
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take into account asset and system degradatiostep, system parameters and critical circuits were
environmental effects, failure behaviors, failure idenified. Authorsdecomposed an electronic system into
interactions and related uncertaintié@iao & Weiss, circuit components to detect only the critical ones to
2016) These PHM challenges are illustratedFiy. 10. minimize the resources and complexity. In theliié step,
Further challenges faced in PHM steps are data acquisitiofault indicators and failure threshold weresidified and
data peprocessing, detection, diagnostics and prognosticéinally, prognostics was penfmed by PF in an aline step.
and decision making. Challenges in PHM steps ar&ault tree (FTYailure analysis technique which is widely

synthesized inFig. 11. used in safety analysis of aircraft systems, study
interactions of sequencesibeventswith the top event.
4. SYSTEM-LEVEL PHM Daigle, Sankararaman, & Roychoudh®2p16)presented

a methodology based on FT technique for sydtml
RUL prediction by combining individuallyndependent
éomponents RULs of aircraft einonmental control
system.Ferri et al.(2013 combined system architecture
Generally, most of He research conducted in failure information with individual component RULs to obtain
diagnostics and prognostics of assetiteratureare based System RUL othesimplified electrical system.

on componentevel health assessment. However, complex_, . . —_
engineering systemsare composed of multipleand Jie Liu & Zio (2016)proposed a reliability assessment and

interactively functioningindividual componentghat can SVSte”? RUL [:r)]re(;jifctiom framework _bhasedl @r}lec(;Jrsive d
influence the system performance very seriously whenthe?ayes'an method for the system with multiple cependent

fail. Hence, development ofPHM methodologiesfor omponents, The system states were estlma_tedhcby
systemlevel monitoring is also important aswell as recursiveBayesian method and Monte Carlo simulation

componenievel PHM methodologie¢Sankavaram et al., wasappliedaccurately in RUL prediction afuclear power

2016) (Khorasgani, Biswas, & Sankararaman, 2016)P'?”‘3.3. residual heat removal systemt systerdlevel
proposed comprehensive tatep analytic systerievel reliability.

prognostics methodology for rectifier systems whichAlthough, some papers onstgmlevel PHM existthere
consistof estimation and prediction stepn estimation  remain many issus and/or challenges to be solved to
step, performance degradation models of individuabevelop systerevel PHM methodologies. Challenges
components were combined andreadoptednto particle  regarding systerevel PHM can be stated as, model
filtering (PF) basedestimation. Whereas ithe prediction  structure and parameters uncertainties, nonlinearity of
step, first order reliability method (FRM) based system  system model, efimonmental effects, measurement noise

level prediction model was built to predict systiawel  and component degradation interactions.

RUL. The proposed systerfevel stochastic approach was

robust and accurate in RUL prediction but nots — ynCERTAINTY QUANTIFI CATION

computationally efficient when compared with inverse . ) ) ) )
FORM. Sai Sarathi Vasan, Chen, & Pe(2013)proposed Since fault prognostics methodologies deal with machine
a modetbased approach faystemlevel RUL prediction future health state prediction, there are many uncertainties
of the radiofrequency receiver system. Theroposed parameters that mfluence the_ piin accuracy. SOl_Jrces
model consists of three steps: knowledgesed creation, of fau_lt prognostics uncertainty can be categorized as
offline and orline testing. In the knowledgeased creation  following;

In this section, scientific worksonductedowardsystem
level basedPHM approaches are reviewed and challenge
in implementation steps are discussed.

= Current state
= Failures & their causes

= RUL
Monitoring — detection —
diagnostics — prognostics
Operation Design
= Maintenance interventions = Adding/replacement of sensors -
= Hardware/software reconfiguration = observability
Effect on the health state and on RUL * Redesign and/or components
= Fault Tolerant Control (TFC) placement = maintainability

Fig. 9. Decision making.
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Uncertainty in system parametersthis concerns the it evolves. All these parameters induce uncertainty which
uncertainty in the values of the physical parameters of thshould be considered in the definition of the failure
system (resistance, inductance, stiffness, capacitatme, threshold.

This uncertainty is induced by the environmental and ) ,
operational conditions where the system evolves. This canankararaman(2015) analyzed the uncertainty in fault

be tackled by using adequate methods such interval oneg?rognostics byjuantifying the sources of uncertainty from
different aspects of viewn (Sun, Zuo, Wang, & Pecht,

Uncertainty in nominal system modethis concerns the 2014) the authors developed stajgacebased
imprecisions in the mathematicanodels which is degradation model teeduce the crack growth prediction
generated to represent the behavior of the system. Thesacertainty based atatafusion.A similar work conducted
imprecisions (or uncertainties) can be the result of a set af fault prognostics uncertainguantificationcan be found
assumptions used during the modeling process and whiéh (Duong & Raghavan, 2017; Sararaman & Goebel,

l ead to models that dondét 2013;tZhamxTaan,t& Aengt 20&PrticlesaH e nbceeh, a vii to &
system. Fig. 12 illustrates an example for this type of important to quantify the uncertainty sources in fault
uncertainty for Micro Electro Mechanical Systems prognostics.

(MEMS) (Skima, Medjaher, Varnier, Dedu, & Bourgeois,

2016a) which degraded differently under the same6. PHM APPROACHES- A REVIEW

operatioml profiles . . . N .
P P In this section,we have reviewed scientific papers which

Uncertainty insystem dgradation modelthe degradation have been published somponerevel PHM, especially

model can be obtained from accelerated life tests which ate complexcomponentswvhich have ahigh maintenance

conducted on differentiatasamples of a component. In cost and severe failure consequences. And they were

practice, thedata obtained byaccelerated life tests summarized under three categories, in general: model

performed underhie same operating conditionsay have based (or physiebased), datariven and hybricapproach

different degradation trend This difference in the Wwith ther drawbacks and merit§'he Experiencebased

degradationtrends can then be considered as an uncertaingpproaches, which is solely basedexpertknowledge is

in the degradation models derived from the data related t@ot presented in this paper. Only the most studied

the accelerated life tests. approaches are presented and review&tM approaches
are illustrated irFig. 13 with their pros and cons.

Uncertainty in praliction: uncertainty is inherent to any

prediction process. Any nominal and/or degradation mode} 1 Model-based Prognostics Approaches

predictions are inaccurate which is impacted by several _ )

uncertainties such as uncertainty in the model parameter$) Modekbased prognostics approaches, ibbaviorof a

the environmental conditions and the futumgission System/component degradation process leading to failure is

profiles. The prediction uncertainty can be tackled by usinglescribed by mathematical models and/or equations

Bayesian and online estimation and prediction tools (e.flerived from physical systems. Derived mathematical
PF and Kalman filter etc.). model is combined with condition monitoring data to

identify model parameters, then udedpredict thefuture
Uncertainty in failure thresholds the failure threshold is evolution of component health state. Mobeked
important in any fault detection and prediction methods. lapproaches are more accurate than other approaches and
determines the time at which the system fails andhave longterm RUL prediction horizon but need good
consequently the remaining useful life. In practice, theexpert knowledge. Deriving models from real physical
value of the failure threshold is not constant and can changgstems is very challengy due to system complexity and
in time. It can also change according to the nature of thstochastic degradation behavior of componeftsodet
system, operating conditions and in the environment whicbasedapproach for Lion cells is illustrated ifrig. 14. The

equivalentbatiery circuit degradation model was adapted

from Mohamed et al. (2010)

Commonly used moddiasedprognostics approaches in
literature are Pari&rdogan law (Irwin & Paris, 1971,
Paris & Erdogan, 1963nd Forman lavwForman, 1972)

In (LI, Kurfess & Liang 2000) stochastic defect
propagation model was presented based on Parisieguat
for bearing defect prognostics.

Feasibility of proposed approach was tested by numerical
simulations. Gearboxes are force transmission components
of mechanical systems tha¢edhealth assessment due to
its importance. In(C. J. Li & Lee, 2005)was proposed
modetbased methodology based on Paris crack
Fig. 12. Uncertainty in degradation modeil MEMS propagation to predict RUL of cracked gears. Gear meshing
(Skima et al., 2016a) stiffnesswasidentified by embedded model from measured






