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ABSTRACT  

In literature, prognostics and health management (PHM) 

systems have been studied by many researchers from many 

different engineering fields to increase system reliability, 

availability, safety and to reduce the maintenance cost of 

engineering assets. Many works conducted in PHM 

research concentrate on designing robust and accurate 

models to assess the health state of components for 

particular applications to support decision making. Models 

which involve mathematical interpretations, assumptions 

and approximations make PHM hard to understand and 

implement in real world applications, especially by 

maintenance practitioners in industry. Prior knowledge to 

implement PHM in complex systems is crucial to building 

highly reliable systems. To fill  this gap and motivate 

industry practitioners, this paper attempts to provide a 

comprehensive review on PHM domain and discusses 

important issues on uncertainty quantification, 

implementation aspects next to prognostics feature and tool 

evaluation. In this paper, PHM implementation steps 

consists of; (1) critical component analysis, (2) appropriate 

sensor selection for condition monitoring (CM), (3) 

prognostics feature evaluation under data analysis and (4) 

prognostics methodology and tool evaluation matrices 

derived from PHM literature. Besides PHM 

implementation aspects, this paper also reviews previous 

and on-going research in high-speed train bogies to 

highlight problems faced in train industry and emphasize 

the significance of PHM for further investigations.   

1. INTRODUCTION  

Reliability, availability, safety and maintenance cost 

effectiveness have been an important concern in many 

industries. Company profit and competitiveness depend on 

designing and producing highly reliable systems and/or 

good quality products. However, designing such 

sophisticated systems brings about many difficulties and 

concerns such as component maintenance cost, along with 

its merits. For industry, an important issue is how to reduce 

maintenance cost and manage business risks while 

increasing asset reliability, availability, and safety. Hence 

there is a need to design and develop sophisticated health 

assessment technologies, such as PHM, which are easily 

implementable by maintenance technicians or engineers to 

improve component reliability and safety. 

The Prognostics and Health Management (PHM) discipline 

provides for viewing overall health state of machines or 

complex systems and assists in making correct decisions on 

machine maintenance. The main duties of PHM technology 

are to detect incipient component or system fault, perform 

failure diagnostics, failure prognostics, and health 

management. There are three main issues to be considered 

when building a robust PHM: an estimation of current 

health state, prediction of a future state along with time to 

fail, and determination of a failureôs impact on the 

performance of a system. For practitioners, to select and 

implement PHM technology is based on their ability and 

knowledge about PHM approaches, tools, etc. Models 

which involve mathematical interpretations, assumptions 

and approximations make PHM hard to understand and 

apply. Prior knowledge to implement PHM in complex 

systems is crucial to building highly reliable systems.  

The goal of this current review paper is to serve as a 

handbook for practitioners in industry to motivate and 

assist them through PHM implementation and help them to 

accomplish their duty more easily. In this paper, a four-step 

maintenance assessment approach is designed which 

consists of (1) critical component analysis, (2) right sensor 

selection for CM, (3) prognostics feature evaluation and (4) 

prognostics methodology and tool evaluation matrices 

derived from PHM approaches presented in the literature. 
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Besides PHM approaches literature review and proposed 

an approach, this paper also reviews previous and on-going 

research in high-speed train bogies to highlight the 

problems faced in the railway industry and to emphasize 

the significance of PHM for further investigations.  There 

are several review papers in literature conducted in fault 

diagnostics and prognostics techniques. Condition Based 

Maintenance (CBM), which is one of the frequently studied 

and applied maintenance techniques in many engineering 

applications, was reviewed in (Jardine, Lin, & Banjevic, 

2006). Authors studied implementation issues of CBM for 

mechanical systems and reviewed diagnostics and 

prognostics developments, data preprocessing algorithms 

and data fusion techniques in the literature. Rotating 

machinery prognostics articles were reviewed and 

synthesized in (Heng, Zhang, Tan, & Mathew, 2009). 

Failure prediction methodologies for rotating machinery 

were classified as reliability models, condition based and 

integrated models with their merits and drawbacks. 

Sikorska and M. Hodkiewiczb (2011) reviewed RUL 

estimation and prognostics modeling approaches under 

knowledge-based, life expectancy, artificial neural 

networks (ANN) and physics models. Authors presented 

prognostics models with their limitations and merits and 

discussed an appropriate model selection for business 

cases.  J. Lee et al. (2014), presented comprehensive 

review, conducting in PHM of rotatory machinery and 

introduced a 5S systematic methodology for PHM design 

which was evaluated in different industrial case studies. 

Kandukuri et al. (2016) reviewed diagnostics and 

prognostics methodologies under reliability centered 

maintenance (RCM) and CBM for two critical 

components; planetary gearboxes and low-speed bearings 

of wind turbines. Authors analyzed different CM data for 

bearing and gearbox diagnostics and concluded that 

vibration signal was better in gearbox fault detection and 

acoustic emission for bearing fault detection. Furthermore, 

CBM based on RCM as an ideal maintenance strategy was 

suggested for farm-level wind turbine health assessment. 

Guillén et al. (2013) studied PHM integration framework 

main topics regarding monitoring and diagnostics 

techniques by synthesizing PHM review papers in different 

application areas. Then, they discussed PHM functionality, 

maintenance types, prognostics approaches and proposed 

the integration of PHM with e-maintenance for proactive 

decision making. State of the art of PHM for nuclear power 

plants (NNP) was presented in (Coble et al. 2015) where 

they reviewed prognostics and maintenance techniques for 

active and passive NNP components. An Kim, and Choi 

(2015) reviewed a data-driven and physics-based 

prognostics algorithms in terms of model definition, 

parameter estimation, robustness in noise and bias handling 

in CM data, to provide practical prognostics options for 

beginners. Kan, Tan, and Mathew (2015) reviewed data-

driven prognostics techniques for non-linear and non-

stationary machine processes. The authors studied 

prognostics techniques that can cope with non-linearity and 

non-stationarity and concluded with further improvements 

in prognostics. In (Rezvanizaniani, Liu, Chen, & Lee, 

2014) authors reviewed a techniques for the battery PHM 

approaches to provide cost effective solutions for battery 

health assessment. These reviewed papers can be used to 

understand the general concepts of system CM. In Table 1, 

we have summarized important issues and remarks pointed 

out by the review papers synthesized from the literature.  

 

Authors Domain Approach Classification Issues & Remarks 

 Jardine et al. (2006) Mechanical ¶ Physics-based 

¶ Data-driven 

¶  

¶ Lack of communication between scientists 

and industry practitioners 

¶ Lack of data collection and efficient 

approach validation 

¶ Implementation difficulty due to rapid 

change of technology design and 

management executives 

 Heng et al. (2009) Mechanical ¶ Physics-based 

¶ Data-driven 

¶ Integration of CM with event data (ED) 

¶ Proper usage of incomplete data 

¶ Maintenance action effects  

¶ Machine operating conditions  

¶ Analysis of nonlinearity between 

condition monitoring data and component 

health state 

¶ Consideration of different failure 

interactions 

¶ Practical requirements and assumptions 

¶ Developing uniform health measurement 

framework 

  Sikorska et al. (2011) Mechanical ¶ Knowledge-based 

¶ Life expectancy 

¶ Physics-based 

¶ Prediction requirements; the goal of RUL 

prediction 

¶ Model-process compatibility; 

compatibility of the model with the real 

world. 
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¶ Resource requirements; availability of 

resources to undertake the modeling (data, 

skills/experience) 

¶ Approach readiness; proof of model 

reliability. 

 Lee et al. (2014) Mechanical ¶ Physics-based 

¶ Data-driven 

¶ Hybrid 

¶ Stated importance of maintenance strategy 

transformation from fail-and-fix to the 

predict-and-prevent methodology. 

¶ PHM was treated as evolved form of 

CBM. 

¶ Future trends of PHM were concluded as 

self-maintenance, resilient systems, and 

engineering immune system. 

 Kandukuri et al. (2016) Renewable energy ¶ Data-driven ¶ Suggested CBM based RCM as an ideal 

maintenance strategy for wind turbine 

¶ Concluded that vibration signal was better 

in gearbox fault detection and acoustic 

emission for bearing fault detection 

 Guillén et al. (2013) Mechanical ¶ Physics-based 

¶ Data-driven 

¶ Hybrid 

¶ Integration of PHM with 

 e-maintenance for proactive decision 

making was emphasized. 

 Coble et al. (2015) Nuclear plants ¶ Physics-based 

¶ Data-driven 

Authors stated followings for detecting and 

managing degradation of reactor 

components; 

¶ Developing non-destructive measurement 

methods and analysis for anomaly 

detection,  

¶ Developing monitoring algorithms for 

component degradation  

¶ Developing prognostics tools for RUL 

estimation. 

 An et al. (2015) Mechanical ¶ Physics-based 

¶ Data-driven 

¶ Model definition 

¶ Parameter estimation 

¶ Robustness in noise and bias handling in 

CM data was studied to provide practical 

solutions for machine prognostics  

 Kan et al. (2015) Mechanical ¶ Model-based 

¶ Data-driven 

¶ Combination models 

¶ Lack of run-to-failure historical data 

¶ Improving prognostics techniquesô 
feasibility with minimum uncertainty 

¶ Good model validation establishment and 

simplification of techniques for real-time 

prognostics 

¶ Developing global prognostics technique 

ranking system to compare their 

performances for all kind of machinery 

Rezvanizaniani et al. 

(2014) 

Electrical ¶ Model-based 

¶ Data-driven 

¶ Fusion models 

¶ Compared different approach drawbacks 

¶ The main challenges in battery health 

management were summarized as 

uncertainty in mobility, durability and 

safety 

Table 1. Main issues & remarks studied by review papers in literature. 

The paper is organized as follows: In Section 2, PHM main 

tasks are explained to introduce general ideology. Section 

3 presents PHM implementation challenges and/or issues 

System-level based PHM is presented in Section 4. Section 

5 presents uncertainty quantification. Section 6 reviews 

component-level PHM approaches and prognostics tools. 

Bogie component diagnostics and prognostics techniques 

are reviewed in Section 7. Section 8 contains PHM 

implementation steps for industry and Section 9 concludes 

the paper. 

2. PHM  M AIN TASKS  

In this section, PHM implementation steps are discussed 

and explained in detail to instruct practitioners and make 

them familiar with PHM infrastructure. Steps involve data 

acquisition, data preprocessing, detection, diagnostics and 

prognostics, decision making and finally human-machine 

interface. PHM steps are depicted in Fig. 1. Each step will 

be explained in the following subsections. 
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Fig. 1. PHM steps. 

2.1 Data Acquisition 

Data acquisition is an initial and essential step of PHM 

which is known as a process of data collection and storage 

from physical component/system under investigation for 

further diagnostics and prognostics purposes. Collected 

data could be either sensory data or event data (ED). The 

ED include the information of maintenance actions (e.g. oil 

change, repairs etc.) taken on the events (e.g. failure, 

breakdown, installation etc.) that happened to the physical 

component. CM or sensory data are measurements tracked 

via installed sensors from asset under investigation, such 

as; acoustic emission data, vibration data, temperature, 

pressure, humidity, resistance, voltage, etc. Where ED 

includes events performed by maintenance technician, such 

as corrective maintenance, asset repairs, installation, 

breakdown, cleaning and oiling on the component/system. 

Data acquisition process is depicted in  Fig. 2 for a railway 

point machine example. ISO definition for data acquisition 

can be found in (ISO 13374-1:2003, n.d.). 

2.2 Data Preprocessing 

Data preprocessing involves data cleaning and data 

analysis steps. Cleaning errors/noise from raw data 

increases the chance of getting error-free data for further 

investigations. Data analysis, which is the second step of 

data preprocessing, involves feature extraction, feature 

evaluation, and selection processes. Cleaned sensory time 

series should undergo a feature extraction process to extract 

only the important and useful features that reflect system 

health state being monitored. Extracted features should 

indicate the failure progression of the system. The feature 

extraction techniques are categorized as time-domain 

based, frequency-based and time-frequency based 

techniques in the literature (Jardine et al., 2006). The time-

domain based feature extraction techniques (e.g. root mean 

square, kurtosis etc.) are used to analyze the global 

characteristics of data and to extract the features in time 

domain. The frequency-domain based feature extraction 

techniques (e.g. Fourier transform, envelop analysis etc.)  

transform the data into frequency domain and are used to 

detect and identify a faults which are not possible by time-

domain based techniques. The time-frequency domain 

based techniques (e.g. Fourier transform, envelop analysis 

etc. Hilbert-Huang transform, Wigner-Ville distribution 

etc.) analyze the data in both time and frequency domains. 

Feature evaluation and selection process is the second 

important step of data analysis after extraction. A feature 

evaluation can be defined as a feature goodness 

quantification process in feature selection. There are 

different techniques used to quantify the feature goodness 

(i.e. degradation trend) such as monotonicity, 

prognosability and trendability (J. Coble & Hines, 2009). 

The best features, which have clear degradation trend, are 

further selected in a feature selection process after 

evaluation (Kimotho & Sextro, 2014). More information 

on feature extraction techniques can be found in (Sharma 

& Parey, 2016; Zhu, Nostrand, Spiegel, & Morton, 2014) 

articles. 

 

Fig. 2. Data acquisition process for railway point 

machine. 
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Fig. 3. Data preprocessing procedure. 

An accurate prediction of remaining-useful-life (RUL) of 

assets depends on well evaluated and selected prognostic 

features. Overall data preprocessing  procedure is depicted 

in Fig. 3. ISO definition for data preprocessing can be 

found in (ISO 13374-1:2003, n.d.). 

2.3 Detection 

There are many factors that cause system components to 

degrade over time, losing their initial performance, and 

which therefore need to be considered in detection 

modeling. Health state detection is the process of detecting 

and recognizing incipient failures and/or anomalies from 

CM data. A fault detection is typically based on the 

quantification of the inconsistencies between the actual and 

the expected behavior of the system in nominal conditions. 

Fig. 4 illustrates failure propagation of component based on 

CM data. 

In Fig. 4, a component CM indicator increases with time as 

the component degrades. As illustrated in the figure, the 

evolution of the health state of the component can be 

divided into 3 phases; Phase-1 (T0 <T1) where the 

component is in a healthy state, Phase-2 (T1< T2) where the 

component is in a faulty state, Phase-3 (T2<) where the 

component is in the completely failed state. Predefining 

thresholds (T1 and T2) is very challenging, which needs 

serious experience for practitioners. Historical CM data can 

be also used to compare and set new thresholds for the same 

type of components. Time-to-failure estimation is 

performed in Phase-2 after the detection process where 

maintenance activities are planned based on estimated 

time-to-failure. Therefore, early detection of component 

failure is important. Fig. 5 illustrates featuresô health state  

 

Fig. 4. Component failure propagation. 

 

Fig. 5. Feature health state transitions. 

transitions for slowly propagating failures (healthy-faulty- 

failed) and for sudden failures (healthy-failed). ISO  

definition for fault detection can be found in  (ISO 13374-

1:2003, n.d.). 

2.4 Diagnostics  

Fault diagnostics is a process of fault detection, isolation 

(i.e. which component is failed), failure mode identification 

(i.e. what is the cause of failure or fault) and degradation 

level assessment (i.e. quantification of the failure severity) 

in condition monitoring. Diagnostics can be conducted 

when a machine is either in complete failure state or in 

faulty state. Fig. 6 illustrates the post-mortem fault 

diagnostics for failed component. Diagnostics results can 

be used for reactive as well as proactive decision making 

(the latter when diagnosing a degraded condition, as 

opposed to a complete failure). ISO definition for fault 

diagnostics can be found in (ISO 13372:2012, n.d.). 

2.5 Prognostics 

Prognostics is defined as the process of predicting the time 

(RUL) at which a component will no longer perform a 

particular function and it is illustrated in Fig. 7. Prognostics 

results are used to support proactive decision making. ISO 

definition for fault prognostics can be found in (ISO 13381-

1:2005, n.d.). 

As illustrated in two examples (Fig. 6 and Fig. 7), 

prognostics serves as prevention of system from possible 

failures by predicting future states while diagnostics is 
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concerned with fault isolation and classification process. 

Prognostics and diagnostics difference is depicted in Fig. 8. 

 

Fig. 6. Diagnostics. 

 

 

Fig. 7. Prognostics. 

 

Fig. 8. Prognostics vs. Diagnostics. 

2.6 Decision Making  

Decision making is a process resulting in the selection of 

logical and/or right maintenance action among several 

alternatives. Maintenance technician must evaluate the 

negatives and positives of each action based on the 

diagnostics or prognostics results. To make effective 

decisions, the technician also should be able to estimate the 

outcomes of each alternative as well. ISO definition for 

decision making can be found in (ISO 13374-1:2003, n.d.) 

Outcomes of decisions could be either operational or 

design based. Decisions made on operational actions could 

be maintenance interventions, hardware/software 

reconfigurations and fault tolerant control (FTC). Design 

based outcomes could be adding and/or replacing sensors 

observability and redesign and/or components placement. 

Decision-making process is illustrated in Fig. 9. 

2.7 Human-Machine Interface 

Human-machine interface is Graphical User Interface 

(GUI) which is used to visualize component health status, 

to execute tasks, to analyze data and to control the 

maintenance operations. 

3. PHM  CHALLENGES  

This section will summarize general and step based 

challenges of PHM. PHM and its implementation is a very 

challenging task that requires several aspects in need for 

further investigation before applying it reliably in real 

applications. Hence, it is important to develop 

sophisticated reliable degradation models for the accurate 

estimation and prediction of its evolution. Safety-critical 

systems such as; automotive, train, nuclear, chemical and 

aerospace industries, need smart predictive maintenance 

systems with very high reliability due to potential 

catastrophic failure consequences. Due to this, smart and 

reliable PHM technology development is urgent to cope 

with maintenance optimization tasks of critical complex 

systems efficiently. Thus, developed PHM system should 
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take into account asset and system degradation, 

environmental effects, failure behaviors, failure 

interactions and related uncertainties (Qiao & Weiss, 

2016). These PHM challenges are illustrated in Fig. 10. 

Further challenges faced in PHM steps are data acquisition, 

data preprocessing, detection, diagnostics and prognostics 

and decision making. Challenges in PHM steps are 

synthesized in  Fig. 11. 

4. SYSTEM-LEVEL PHM 

In this section, scientific works conducted toward system-

level based PHM approaches are reviewed and challenges 

in implementation steps are discussed.  

Generally, most of the research conducted in failure 

diagnostics and prognostics of assets in literature are based 

on component-level health assessment. However, complex 

engineering systems are composed of multiple and 

interactively functioning individual components that can 

influence the system performance very seriously when they 

fail. Hence, development of PHM methodologies for 

system-level monitoring is also important as well as 

component-level PHM methodologies (Sankavaram et al., 

2016). (Khorasgani, Biswas, & Sankararaman, 2016) 

proposed comprehensive two-step analytic system-level 

prognostics methodology for rectifier systems which 

consist of estimation and prediction step. In estimation 

step, performance degradation models of individual 

components were combined and were adopted into particle 

filtering (PF) based estimation. Whereas in the prediction 

step, first order reliability method (FORM) based system-

level prediction model was built to predict system-level 

RUL. The proposed system-level stochastic approach was 

robust and accurate in RUL prediction but not 

computationally efficient when compared with inverse-

FORM.  Sai Sarathi Vasan, Chen, & Pecht (2013) proposed 

a model-based approach for system-level RUL prediction 

of the radio-frequency receiver system. The proposed 

model consists of three steps: knowledge-based creation, 

offline and on-line testing. In the knowledge-based creation 

step, system parameters and critical circuits were 

identified. Authors decomposed an electronic system into 

circuit components to detect only the critical ones to 

minimize the resources and complexity. In the off-line step, 

fault indicators and failure threshold were identified and 

finally, prognostics was performed by PF in an on-line step.  

Fault tree (FT) failure analysis technique which is widely 

used in safety analysis of aircraft systems, study 

interactions of sequences of sub-events with the top event. 

Daigle, Sankararaman, & Roychoudhury (2016) presented 

a methodology based on FT technique for system-level 

RUL prediction by combining individually independent 

components RULs of aircraft environmental control 

system. Ferri et al. (2013) combined system architecture 

information with individual component RULs to obtain 

system RUL of the simplified electrical system. 

Jie Liu & Zio (2016) proposed a reliability assessment and 

system RUL prediction framework based on a recursive 

Bayesian method for the system with multiple dependent 

components. The system states were estimated by the 

recursive Bayesian method and Monte Carlo simulation 

was applied accurately in RUL prediction of nuclear power 

plantsô residual heat removal system at system-level 

reliability. 

Although, some papers on system-level PHM exist, there 

remain many issues and/or challenges to be solved to 

develop system-level PHM methodologies. Challenges 

regarding system-level PHM can be stated as, model 

structure and parameters uncertainties, nonlinearity of 

system model, environmental effects, measurement noise 

and component degradation interactions. 

5. UNCERTAINTY QUANTIFI CATION  

Since fault prognostics methodologies deal with machine 

future health state prediction, there are many uncertainties 

parameters that influence the prediction accuracy. Sources 

of fault prognostics uncertainty can be categorized as 

following; 

 

Fig. 9. Decision making. 
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.  

Fig. 10. PHM challenges. 

 

Fig. 11. Challenges faced in PHM steps. 
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Uncertainty in system parameters: this concerns the 

uncertainty in the values of the physical parameters of the 

system (resistance, inductance, stiffness, capacitance, etc.). 

This uncertainty is induced by the environmental and 

operational conditions where the system evolves. This can 

be tackled by using adequate methods such interval ones. 

Uncertainty in nominal system model: this concerns the 

imprecisions in the mathematical models which is 

generated to represent the behavior of the system. These 

imprecisions (or uncertainties) can be the result of a set of 

assumptions used during the modeling process and which 

lead to models that donôt fit exactly the real behavior of the 

system. Fig. 12 illustrates an example for this type of 

uncertainty for Micro Electro Mechanical Systems 

(MEMS) (Skima, Medjaher, Varnier, Dedu, & Bourgeois, 

2016a) which degraded differently under the same 

operational profiles. 

Uncertainty in system degradation model: the degradation 

model can be obtained from accelerated life tests which are 

conducted on different data samples of a component. In 

practice, the data obtained by accelerated life tests 

performed under the same operating conditions may have 

different degradation trend. This difference in the 

degradation trends can then be considered as an uncertainty 

in the degradation models derived from the data related to 

the accelerated life tests.  

Uncertainty in prediction: uncertainty is inherent to any 

prediction process. Any nominal and/or degradation model 

predictions are inaccurate which is impacted by several 

uncertainties such as uncertainty in the model parameters, 

the environmental conditions and the future mission 

profiles. The prediction uncertainty can be tackled by using 

Bayesian and online estimation and prediction tools (e.g. 

PF and Kalman filter etc.). 

Uncertainty in failure thresholds: the failure threshold is 

important in any fault detection and prediction methods. It 

determines the time at which the system fails and 

consequently the remaining useful life. In practice, the 

value of the failure threshold is not constant and can change 

in time. It can also change according to the nature of the 

system, operating conditions and in the environment which 

 

Fig. 12. Uncertainty in degradation model of MEMS 

(Skima et al., 2016a). 

it evolves. All these parameters induce uncertainty which 

should be considered in the definition of the failure 

threshold.  

Sankararaman, (2015) analyzed the uncertainty in fault 

prognostics by quantifying the sources of uncertainty from 

different aspects of view. In (Sun, Zuo, Wang, & Pecht, 

2014), the authors developed state-space-based 

degradation model to reduce the crack growth prediction 

uncertainty based on data fusion. A similar work conducted 

in fault prognostics uncertainty quantification can be found 

in (Duong & Raghavan, 2017; Sankararaman & Goebel, 

2013; Zhao, Tian, & Zeng, 2013) articles. Hence, itôs 

important to quantify the uncertainty sources in fault 

prognostics.   

6. PHM  APPROACHES- A REVIEW  

In this section, we have reviewed scientific papers which 

have been published in component-level PHM, especially 

in complex components which have a high maintenance 

cost and severe failure consequences. And they were 

summarized under three categories, in general: model-

based (or physics-based), data-driven and hybrid approach 

with their drawbacks and merits. The Experience-based 

approaches, which is solely based on expert-knowledge, is 

not presented in this paper. Only the most studied 

approaches are presented and reviewed. PHM approaches 

are illustrated in Fig. 13 with their pros and cons. 

6.1 Model-based Prognostics Approaches 

In Model-based prognostics approaches, the behavior of a 

system/component degradation process leading to failure is 

described by mathematical models and/or equations 

derived from physical systems. Derived mathematical 

model is combined with condition monitoring data to 

identify model parameters, then used to predict the future 

evolution of component health state. Model-based 

approaches are more accurate than other approaches and 

have long-term RUL prediction horizon but need good 

expert knowledge. Deriving models from real physical 

systems is very challenging due to system complexity and 

stochastic degradation behavior of components. A model-

based approach for Li-ion cells is illustrated in Fig. 14.  The 

equivalent battery circuit degradation model was adapted 

from Mohamed et al. (2010). 

Commonly used model-based prognostics approaches in 

literature are Paris-Erdogan law  (Irwin & Paris, 1971; 

Paris & Erdogan, 1963) and Forman law (Forman, 1972). 

In (LI, Kurfess, & Liang, 2000), stochastic defect-

propagation model was presented based on Paris equation 

for bearing defect prognostics. 

Feasibility of proposed approach was tested by numerical 

simulations. Gearboxes are force transmission components 

of mechanical systems that need health assessment due to 

its importance. In (C. J. Li & Lee, 2005), was proposed 

model-based methodology based on Paris crack 

propagation to predict RUL of cracked gears. Gear meshing 

stiffness was identified by embedded model from measured  




