A Review of Techniques to Mitigate Jamming in Electromechanical Actuators for Safety Critical Applications

Yameen M. Hussain, Stephen Burrow, Leigh Henson, and Patrick Keogh
Publication Target: 
Publication Issue: 
Special Issue from PHMAP17 Highlights
Submission Type: 
Full Paper
ijphm_18_012.pdf720.48 KBApril 2, 2018 - 3:27am

This paper presents a review of techniques to mitigate jamming in Electromechanical Actuators (EMA) for safety critical applications in aerospace. Published progress to date is evaluated, with the remaining challenges highlighted. Through the use of Hierarchical Process Modelling (HPM), two key approaches to mitigate jamming were identified: (1) Fault Diagnostics (FD) and (2) Fault tolerant design. The development of a fault tolerant EMA system is currently at an early stage for implementation within safety critical systems due to the increased complexity of such systems (for example the anti-jamming system may require FD functionality itself). Challenges also exist for FD approaches particularly in achieving a robust means of fault detection. It is proposed that a hybrid FD approach, using a combination of model based and data-driven techniques to predict the onset of jamming, would be beneficial in capturing the discrepancies between the predicted and observed behaviour used to isolate and identify faults. Furthermore, several aspects of modelling and of data-driven methodologies for FD in the literature omit potentially important behaviours, and recommendations are made to improve upon this. For example, the simulation of faults in test stand analysis and the fidelity modelling of the motor and mechanical components are key areas to develop.

Publication Year: 
Publication Volume: 
Publication Control Number: 
Page Count: 
Submission Keywords: 
Health Monitoring; Prognostics; Aerospace; Ballscrew; Electromechanical Actuators; Jamming
Submission Topic Areas: 
Component-level PHM
Health management system design and engineering
Model-based methods for fault detection, diagnostics, and prognosis
Modeling and simulation
PHM for electronics
Physics of failure
Systems and platform applications
Submitted by: 

follow us

PHM Society on Facebook Follow PHM Society on Twitter PHM Society on LinkedIn PHM Society RSS News Feed