An Efficient Deterministic Approach to Model-based Prediction Uncertainty Estimation

Matthew Daigle, Abhinav Saxena, and Kai Goebel
Submission Type: 
Full Paper
phmc_12_100.pdf453.52 KBSeptember 20, 2012 - 1:22pm

Prognostics deals with the prediction of the end of life (EOL) of a system. EOL is a random variable, due to the presence of process noise and uncertainty in the future inputs to the system. Prognostics algorithms must account for this inherent uncertainty. In addition, these algorithms never know exactly the state of the system at the desired time of prediction, or the exact model describing the future evolution of the system, accumulating additional uncertainty into the predicted EOL. Prediction algorithms that do not account for these sources of uncertainty are misrepresenting the EOL and can lead to poor decisions based on their results. In this paper, we explore the impact of uncertainty in the prediction problem. We develop a general model-based prediction algorithm that incorporates these sources of uncertainty, and propose a novel approach to efficiently handle uncertainty in the future input trajectories of a system by using the unscented transform. Using this approach, we are not only able to reduce the computational load but also estimate the bounds of uncertainty in a deterministic manner, which can be useful to consider during decision-making. Using a lithium-ion battery as a case study, we perform several simulation-based experiments to explore these issues, and validate the overall approach using experimental data from a battery testbed.

Publication Year: 
Publication Volume: 
Publication Control Number: 
Page Count: 
Submission Keywords: 
model-based prognostics
unscented transform
Submission Topic Areas: 
Model-based methods for fault detection, diagnostics, and prognosis
Submitted by: 

follow us

PHM Society on Facebook Follow PHM Society on Twitter PHM Society on LinkedIn PHM Society RSS News Feed