Health Management at Rolls-Royce

Keith Calhoun

01 October 2009
Stages of Engine Health Management

- **Sense** - Measurements made on-board
- **Acquire** - Data capture system with some data processing, analysis or compression
- **Transfer** - Remote accessibility to review data and information acquired. This may entail a combination of online real-time access to remote information or transferring the captured data to a support center
- **Analyze** - Provide information to maintenance support experts to consider and provide recommendations.
- **Action** - Accurate trouble-shooting and maintenance support advice given to the equipment operator in time to manage or avoid a potential adverse event
1970s

- Basic cockpit indicators only
 - Shaft speeds, EPR, fuel flow, vibration

- Manual
 - Flight engineer recorded data during cruise operation

- Manual
 - Paper reports physically mailed to powerplant engineering
 - Entered into system by hand

- Data analyzed by airline using simple engine model to correct data
 - Determined changes in TGT and shaft speed margins

- Longer term planning
 - Airline planned for engine removals at zero margin
1990s

Dedicated EHM sensors added
- Interstage gas path measurements

Automatic
- ACMS recorded snapshots during take-off, climb and cruise
- Exceedences and abnormal events captured

Real-time option available
- ACARS enabled data to be sent by VHF or SatCom

Data analyzed by airline using comprehensive models
- Better margin assessments from take-off and climb data
- Assessed gas path performance trends

Longer term planning and some event avoidance
- Airline plans for engine removals at zero margin
- Significant changes in performance detected
Today and tomorrow

Sense
- More dedicated EHM sensors and systems
 - EMCD
 - EMU

Acquire
- Automatic
 - ACMS records snapshots during take-off, climb and cruise
 - Continuous data capture and on-board analysis
 - Real-time
 - ACARS enables data to be sent by VHF or SatCom
 - Options to manage larger quantities of data through GATELINK

Transfer
- Data analyzed by specialist companies
 - Investment in data analysis and diagnosis systems (CI tools)
 - Application of fleet-wide knowledge - improved detection

Analyze
- Focus on ability to react to information
 - Links through field service offices into airlines
 - Rolls-Royce Operations Room provides OEM expert knowledge

Action
EHM Stage - Sense

- Sense - Measurements made on board

- Vibration Monitoring
- Advanced Engine Testability System
- Engine Performance Monitoring
- Built-In Test
- Configuration Control
- Life Usage Monitoring
- Oil Debris Monitoring
- Incident Monitoring

Other engine data:
- Fuel - flow, Δp, FMV pos 'n
- Oil - press, temp, Δp, quantity
- Zone 1, 3 temps
- EEC temp

Aircraft data:
- Alt, Mn, TAT
- Bleed status
- Power offtake

Rolls-Royce
EHM Stage - Acquire

- **Acquire** - Data capture system with some data processing, analysis or compression
EHM Stage - Transfer

- **Transfer** - Remote accessibility to review the data and information that is acquired. This may entail a combination of online real-time access to remote information or transferring the captured data to a support center.
EHM Stage - Analyze

- **Analyze** - Provide information to maintenance support experts to consider and provide recommendations.

 Advanced data analysis & pattern recognition tools
 - Data smoothing
 - Data fusion
 - Neural net pattern recognition

 EHM service support (operations room)
 - Diagnostics/prognostics
 - Manage/track alerts
 - Fleet management
 - Life usage monitoring
EHM Stage - Action

Action - Accurate trouble-shooting and maintenance support advice given to the equipment operator in time to manage or avoid a potential adverse event.
Lessons learned

- Develop EHM system with engine from project start
 - Service philosophy drives requirements
 - Manage issues on wing or in shop
 - Who needs data to make decisions
 - End-to-end system definition
 - Late integration leads to rework or compromise
 - Planning can yield optimized design
Lessons learned

- Need data available quickly and consistently to make timely decisions
 - Events can happen any time during operation
 - Missed event detection can lead to secondary damage
 - Automated data transfer facilitates action
 - Manual data transfer inconsistent
 - Procedures are not always followed
Lessons learned

- Use multiple data sources to provide enhanced analysis capability
 - Looking at only one data source (sensor) may not lead to correct conclusion
 - Interaction between components can provide additional data source
 - Response of different components can differentiate conditions
Lessons learned

- Realize false alarms undermine credibility
 - Need to understand operation to set effective alert limits
 - Initial limits may not be correct
 - Need to be able to modify as needed
 - Tighten limits as experience is gained
 - Use human intervention to check computer results prior to notification
 - Incorporate experience into computer capability as confidence is gained
Lessons learned

- Relate maintenance tasks to performance analysis
 - Maintenance actions can cause shifts in performance trends
 - Typically positive shift
 - Change in performance trends cause search for cause
 - Record maintenance action to eliminate need to determine if trend shift is related
Lessons learned

- Retain control of data acquisition system to improve analysis
 - Knowledge is gained about system analysis as applications mature
 - Need to adjust data acquisition criteria to detect new scenarios of issue identification
 - Data acquisition part of aircraft system
 - Difficult to separate engine data from other data
 - Implementation of software controlled by others
Lessons learned

- Anticipate unexpected failures as fleet ages
 - Detection of known conditions accounted for in design and development (FMECA)
 - Interactions between components can result in unexpected failure modes
 - Flexible system allows quick updates to detect new failures
Lessons learned

- Understand that system cost justification is difficult to quantify
 - Depends on business model
 - Cost of situations EHM can reduce?
 - Costs to consider:
 - Sensor and software development
 - Support organization
- Knowledge of cost/benefit is competitive advantage
Lessons learned

- Assess technology developments since design of last system
 - Determine if new capabilities are available to satisfy requirements
 - Start with old system and add new capabilities
 - System requirements not satisfied by current capabilities drive new ones
Lessons learned

- Be conservative in identifying benefits of new technology
 - The actual capability of new technology often ends up being less than planned
 - Ideas are “sold” to generate investment
 - It takes time to fully develop the capability of new technologies
 - Users may lose interest/confidence if lofty claims are not met
Lessons learned

- Recognize safety critical failures are not mitigated by EHM
 - Product is safe without EHM
 - Analysis capability provides information allows better economic decisions
 - Actions based on analysis are result of human decisions
 - Automated decision making requires higher level certification
Next Steps

- Integrate EHM analysis into...
 - Engine control real-time
 - Aircraft systems
- Data acquisition and analysis
 - Continuous
 - Snapshot
Next Steps

- System architecture
 - Open
 - Distributed
- Validation & verification
 - Prognostics
 - Configurable software
- Special needs for UAV applications?