What’s our application?
Oil & Gas Environment Profile

- Remote Site / Deep operations
- High CAPEX
- Corrosive
- Expensive Maintenance Costs
- High Temperature
- Pressure to be productive

GE Imagination at work
Definition of Artificial Lift

Gas Lift

ESP’s

PCP

HydroLift Hydraulic Pumps

Beam pump
Electro Submersible Pump System

Monitor
- Intake Pressure
- Intake Temperature
- Motor Temperature
- Discharge Pressure
- Vibration
- Motor Current
- Casing Pressure
- Tubing pressure

Control
- ESP Motor Frequency
- ESP Remote Start
- ESP Remote Stop
Diagnostics using Analytic Analysis
Typical ESP failures & causes

FAILURES

Mechanical
- Leaking
- Failed pressure test
- Stuck *(e.g. does not rotate)*
- Burst
- Bent
- Broken
- Disconnected

Material
- Burn
- Corroded
- Worn
- Melted
- Overheated

Electrical
- Short circuit
- Open circuit
- Faulty power

Others
- Plugged with solids
- Contaminated fluid

CAUSES

Design related
- Improper:
 - Equipment capacity
 - Material selection
 - System configuration

Fabrication
- Manufacturing problem
- Improper quality control
- Improper storage
- Improper transportation

Storage & Transportation
- Improper storage
- Improper transportation

Installation
- Assembly procedure
- Installation procedure

Operational
- Normal wear and tear
- Installation or inadequate training

Reservoir
- Reservoir fluids
- Reservoir performance

Source: C-FER
Diagnostics for ESP

Program
- Development of a functional M&D system for ESPs
- Transition to live field system

Advantage
- Reliable lift performance
- Reduced equipment downtime
- Increased installed base and margin
Deliverables and Business value

Deliverables

- **Models & Tools:**
 - Long term service agreements
 - Optimize Spares & Logistics
 - Optimize Maintenance

- **Models & Tools:**
 - Survival Analysis
 - Recurrent Event Analysis
 - Probabilistic design models

- **Tools & Algorithms:**
 - Anomaly Detection
 - Change-Point Detection
 - Data Fusion

- **Report & Algorithms:**
 - Data mining – identify issues (known, emerging)
 - Data for probabilistic design

Business Impact

- Lower cost of quality
- Lower lifecycle costs

- Improved reliability
- Improved availability

- Reduce downtime
- Services revenue

- Optimized operation
- ESP improved tracking
How much will a failure cost?

• Lost production cost (Estimated):
 Price of oil barrel: $100
 Typical production: 500 b/d
 Water cut: 70% (percentage of water per each barrel produce)
 Estimated downtime: 2 days (per incident in remote areas)
 Estimated incidents per year: 10
 Estimated savings: \(500 \text{ b/d} \times 20 \times 0.3 \times $100 = $3MM!!\)

• Intervention cost (Estimated):
 Onshore conventional well: $5K to $25K per intervention
 Onshore unconventional well: $150K to $250K per intervention
 Offshore well: Up to $1MM per intervention

Intervention costs is often a deciding factor for customer sale!
Industrial Internet

200 sensors across the turbine generate 300 data points per second of performance and operation every hour.

Intelligent Machines + Advanced Analytics + People at Work

GE imagination at work
Industrial Internet creating value in Oil & Gas

Intelligent Machines + Advance Analytics + People at Work
In conclusion

The key for a successful Prognosis solution implementation is an adequate management of Big Data. At GE Oil & Gas, the Industrial Internet will provide the tools and means necessary to achieve this goal and facilitate the transition to Brilliant Machines.
For more information, please visit...

GE Oil & Gas Artificial Lift (ESP)
- http://www.ge-energy.com/products_and_services/products/electric_submersible_pumping_systems/index.jsp

Industrial Internet

GE Predictivity™ Industrial Internet Solutions
- https://www.ge.com/b2b/predictivity

Data Management & Data Analytics Software