Affordable Therapy and Service Robots for Health and Function Monitoring

1-3 Michelle J. Johnson, PhD

1 Physical Medicine and Rehabilitation, University of Pennsylvania
2 BioEngineering, University of Pennsylvania
3 Rehabilitation Robotics Research and Design Lab (RRRD), Pennsylvania Institute of Rehabilitation Medicine

September 25, 2018
Presentation at PHM 2018 Workshop
Financial Disclosures

1. Patents filed on Rehab CARES robot system
2. Equity in a spin-off company of UPENN called Recupero Robotics, LLC.
UPENN LOVE
Rehabilitation Robotics Lab

• The lab consists of an interdisciplinary team working in the fields of robotics, rehabilitation, and neuroscience.

• Our mission is to translate research findings into the development of affordable, assistive and therapeutic robots that can provide effective neurorehabilitation both nationally, and around the world.

Core Research Areas

- Affordable robots for Global Health
- Mobile Therapeutic Assistance
- Neuro-rehabilitation
Lab Team (Past and Present)
Learning Objectives

• Background
• Technology-assisted rehabilitation
• Case for Therapy and Service Robots in Community
• Integrated Systems Health Management? How work?
Motivation

• Communicable and Non-communicable diseases.
 • NCDs were 68% of all deaths globally in 2012.
 • It is estimated to increase to 73% by 2020.
 • Cardiovascular diseases account for about 30% of NCD deaths (~17.7 million)
 • Stroke account for about 11.9% of NCDs deaths.
 • Survival often means living with disability or decreased function

• Ageing Populations
 • Populations are aging → 20-30% over 65 age by 2030;
 • Age is a leading risk factors for many diseases.
Disability and Age: USA

Ref: 2016 Disability Statistics
by Lewis Kraus, MPH, MCP at the Center on Disability at the Public Health Institute
ICF: Common Areas of Function/Impairment

- **Cognition** – understanding & communicating
- **Mobility** – moving & getting around
- **Self-care** – hygiene, dressing, eating & staying alone
- **Getting along** – interacting with other people
 - Interpersonal Interactions
- **Life activities** – domestic responsibilities, leisure, work & school
 - Domestic Life
 - Major Life Areas
- **Participation or Community, Social and Civic Life** – joining in community activities

![Prevalence Rates: Age 65 to 74 years (%)](chart.png)
Technology Can Bridge This Gap
Therapy and Service Robots
Observing Human-Human

Therapy Session
Capturing Roles and Cues

- Multimedia Video Analysis Software: MVTA
- 8 Videos Coded independently by 2 therapists
Modelling Intent

Ideally the robot should take on three roles as demonstrator, observer and helper and co-act with the patient. The helper role is often seen in hands-on effector THERAPY ROBOTS (e.g., ADLER, Theradrive). Demonstrator and Observer Roles are often found in ASSISTIVE ROBOTS or SERVICE ROBOTS (e.g., Nao). Fluid transitioning from contact to non-contact with a patient is not often done due to huge safety concerns about soft and hard impacts.
Therapy Robots

- Originally developed to treat neurological disorders such as stroke and cerebral palsy.
 - Function to automate and deliver autonomous or semi-autonomous therapy for arm (or leg or joint)
 - Function to assess level of disability and impairment remaining in a limb arm (or leg)
 - Outcome >>> reducing motor impairment, increasing function and driving brain re-organization
- Currently being developed to treat a variety of diseases and disorders, e.g., Multiple Sclerosis
- Typically function in clinics or supervised settings
Haptic TheraDrive

• Single Degree of Freedom Robot

• Assessment Metrics:
 • Root Mean Square Error (Accuracy)

• Gaming

Assistive Robots = Service Robots in Rehabilitation/Medical Settings

- Replace other functions or activities or things (e.g. surveillance robots)
- Replace a loss limb (e.g., prosthetics)
- Replace the function of a paralyzed limb and do tasks instead of the limb (e.g., wheelchair robot)
Demonstrator/Observer roles >>

Baxter: Elder Exercise

• Collaboration with Dr. Kuchenbecker and Dr. N Watts
• Elder Exercise Care

Demonstrator role >>
Flo: Mobile Therapist

- Combination of two off the shelf robots (Nao and VGo)
- Designed to provide remote and in-person “hands off” therapy
Therapy and Service
Robots for Elders in the Community
Living Independently for Elders – A Mercy LIFE Center

- Community-based setting
- All-inclusive care
 - Clinical care
 - Rehabilitation care
 - Doctors, Nurses, Therapists, Caregivers
- Elders > 65 age
- Elders have various levels of function
- Medicare/Medicaid
- 80% African American
- 75% Female
- GOAL >> MAINTAIN ELDERS INDEPENDENCE

- NSF Partnerships for Innovation: Building Innovation Capacity program (Grant #1430216; IIP-1430216).
- Rehab Robotics Lab, MOD Lab (Dr. Yim, PI), Penn Nursing (Dr. Cacchione), Savioke, Inc. (Dr. Lau)
Activity and Participation >> Independence

• Activity is a execution of a task or activity by the elder
• Participation is involvement in a life situation
• Impairment >> Activity Limitation >> Participation Restrictions
• Participation promotes inclusion in life activities in the context of the persons community
• External factors such as social roles, social environment, political environment, physical environment, psychological environment may lead to activity limitations and participation restrictions and therefore independence reduction.

Ref: PM&R Secrets 2nd Edition and ICF ref
Can we develop an affordable social robot that can support elders at the LIFE center?

- $20,000,
- Mobile,
- Manipulates

What tasks should it do?
Elder Care: Low-Cost Assistive Mobile Robot
System Description: Savioke Hardware

Specifications:
- 177mm touchscreen monitor, storage bin
- Navigation: Lidar and sonar sensors
- Speakers added for enhancing interaction
- Camera for recording the interaction
Mobile only Deployments*

Autonomous Hydration reminder and Water delivery

Walking encouragement

System Description: Mod Lab’s Manipulator

\[l_1 = 20 \text{cm}, \quad l_2 = 80 \text{cm} \]
Reaching Objects/Corn Toss Games
Therapy and Service Robots as Integrated System Health Managers
Integrated Systems Health Management

- Fault detection (detecting that something is wrong)
- Fault isolation (determining the location of the fault)
- Fault Diagnostics (isolation & identification)
- Fault identification (determining what is wrong; that is, determining the fault mode)
- Fault prognostics (determining when a failure will occur based conditionally on anticipated future actions)
Scenario 1: Fully Autonomous Robot

Patient Unable to do task/ Expresses doubt; Physical/Verbal Cue

Robot Demonstrator
Patient Observer

Demo Completed;

Robot Helper
Patient Performer with Assistance

Patient Error; Physical Cue

Robot Observer
Patient Performer

Patient

Autonomous Robot Guidelines

- Assist the elder with tasks
- Monitor the elder actions
- Provide either physical or verbal feedback based on user performance
 - Physical assistance if provided should be safe
- Able to modify level of robot involvement required for task
- Able to track individual elders and group of elders
- Able to communicate with elder - preference
- Able to switch out of HELPER to either OBSERVER OR DEMONSTRATOR modes
- Monitor the elder health over time
- Alert clinicians, medical doctors and caregivers to decline
- Suggest actions/tasks to elder increase activity and social engagement
Fault detection (detecting that something is wrong)

• Monitor unusual function in key domains
 • Heart rate – Pulse Oximeters
 • Pain levels – Visual Analog Scales
 • Exertion levels – Borg Scales
 • Emotional levels – Face expression and Galvanic Skin Function
 • Gait – stride length
 • Location – GPS
 • Social activity – calls, visits, level of contact with others
 • Communication – responsiveness
 • Brain activity - EEG
 • Range of Motion – joint sensors, 3D motion capture
 • Body kinematics - 3D motion capture
 • Muscle kinetics - EMG
 • etc

• What are the threats to independent function in key domains: Cognition, mobility, hearing, vision etc.?
Fault Diagnostics (isolation & identification)

• Fault isolation (determining the location of the fault)
 • Gather periodic clinical/therapy data from records
 • Gather data on adverse events – e.g., falls, hospitalization, ER visits
 • Gather robot-interaction data
 • Measure current function in the key domains including medical to learn unusual changes
 • Isolate areas impacted

• Fault identification (determining what is wrong)
 • Compare current function to past functional levels
 • Isolate anomaly
Fault Prognostics (determining when a failure will occur based conditionally on anticipated future actions)

• Define elder typical actions over time
• Define elder frequency of adverse events – e.g., falls, hospitalization, ER visits
• Increase robot interaction/actions to probe for possible deviations
• Define group actions over time
Possible Barriers to Acceptance of Scenario 1

• Robot replaces human contact and may seem impersonal
 • Human does motivation and psychological aspect of therapy
• Robot interaction with human must be VERY safe
• Robot will not be as good as therapist
• Robot may not be versatile to monitor more than one human >>>
 alone or in groups
• Robot may not be able to easily obey privacy and security rules
• Requires human to wear sensors
Questions

• What are best strategies for overcoming barriers and creating an ACCEPTABLE Therapy/Service Robots that can do IHSM?
• How do we overcome barriers of low number of data?
• How do we juggle the need to track the individual AND the group?
• How can the Therapy/Service Robots that can do IHSM do SHARED management?
Acknowledgements

• Council of Elders at the PACE and SAL staff and members at LIFE center
• National Science Foundation (NSF) Partnerships for Innovation: Building Innovation Capacity program under Grant No. 1430216; IIP-1430216
• National Institutes of Health: NICHD Grant No. R21 HD084327-01 grant
• NSF Louis Stokes Alliances for Minority Participation Grant, CURF Vagelos Undergraduate Research grants
• University of Pennsylvania – Center for Healthcare Technology Pilot Grant 2018
• Mexican Grants
 • El Comite’ Tecnico y de Administracion del Fondo Mixto CONACYT-Gobierno del Estado de Chihuahua CHIH 2009-CO2-127781 entitled “Gimnasio Robotica”;
 • CONACYT I0015-225083.
• American Heart Association Grant #0635450Z
• NIH K25 Grant #1K25NS058577 – 05
• Research supported by RERC Technologies for Children with Orthopedic Disabilities (TECP4POD): US Department of Education, NIDRR H133E100007
• Departmental funds of the Physical Medicine and Rehabilitation of the University of Pennsylvania
QUESTIONS?