A Tutorial on Feature Extraction Methods

Tianyi Wang
GE Global Research

Subrat Nanda
GE Power & Water

September 24, 2012
Outline

• Introduction
• Data characteristics
• Application & domain
• Feature extraction methods
• Feature dimensionality reduction
• Issues in real applications
• Summary
Where Feature Extraction fits in a PHM System

Data Acquisition (DA)

Data Manipulation (DM)

State Detection (SD)

Health Assessment (HA)

Prognostics Assessment (PA)

Advisory Generation (AG)

a.k.a. **Feature Extraction** in data-driven PHM solutions

such as normalization, smoothing, outlier removal, missing data imputation, ...

source: MIMOSA OSA CBM architecture
Feature extraction: what and why

What:

Feature extraction transforms raw signals into more informative signatures or fingerprints of a system

Why:

• Extract information from data
• Serve the need of follow-up modeling procedures
• Achieve intended objectives
Example of feature extraction

Problem: bearing health assessment

Data: vibration (from accelerometers)

Extract frequency domain features:

- Segment the data with a certain time window
- Transform each segment into frequency spectrum with FFT
- Calculate energy for each frequency band around interested frequency F

 \[E_F = \sum_{|f-F|<\Delta} A_f^2 \]

 where A_f is the amplitude of frequency f
- Obtain feature vector $[E_{F1}, E_{F2}, ...]$

Diagram:

1. Run to failure vibration data
2. One segment
3. Frequency spectrum
4. Energy for selected frequency band
5. Feature vector
Feature extraction process

Raw data/preprocessed data

Feature generation

Feature set

Feature dimensionality reduction

Data representation:
- Varying format: 1-D, 2-D time series, events, ...
- Potential heterogeneous

- With exhaustive or ad hoc approach
- Dimensionality may reduce or increase
- Incorporate domain knowledge
- Underlying physical phenomenon

Feature representation:
- A scalar or vector per feature
- One vector concatenating all features
- One matrix holding all samples of features

Two approaches
- Select a subset of generated features
- Transform the features to another space with lower dimensions
What features to extract? Factors to consider...

What domain the application is; what knowledge and requirements are present

What data are available and what are their properties

What feature extraction algorithms are available and applicable
Outline

• Introduction
• Data characteristics
• Application & domain
• Feature extraction methods
• Feature dimensionality reduction
• Issues in real applications
• Summary
Data (signal) properties

- Time variant
- Time invariant (meta data such as asset ID)

- Temperature
- Pressure
- Current
- Voltage
- Speed
- Acceleration
-...

- Stationary
- Cyclic (non periodic)
- Waveform (periodic)
- Stochastic (non cyclic)

Time dependency

- Sampling (time discretization)
 - Transaction/event (push)
 - Sensor (pull)
 - Evenly sampled
 - Unevenly sampled

Physics nature

- Sample dimension (not counting time)
 - Scalar
 - Vector
 - Matrix
 -...

- Dynamics (relative to sampling)
- Sample value discretization
 - Binary
 - Discrete nominal (categorical)
 - Discrete ordinal (integer)
 - Continuous (real number)
Data sampling (time discretization)

Transaction/event (data are “pushed” by data originator)
- Data records occur only at the specified time stamp.
- Data between the time stamps (interpolation) are undefined.

Sensor (data are “pulled” from data originator)
- Data samples are acquired only at the specified time stamp.
- Data between the time stamps are just not observed.
- Sampling rate
 - Evenly sampled – controlled (e.g. 100 Hz)
 - Unevenly sampled - triggered
Sample value discretization

Binary
 • Events status, on/off sensor

Discrete nominal (categorical)
 • Event code, operating mode, asset ID

Discrete ordinal (integer)
 • If interpolation is meaningful, treat as continuous; otherwise, treat as discrete nominal

Continuous (real number)
 • Most sensors
Signal dynamics (relative to sampling)

Stationary (constant + white noise)
- Power, speed, temperature in steady state of motors, gas turbines, etc.

Stochastic (non-cyclic)
- Power, speed in wind turbine operation

Cyclic (consider each period individually)
- Power, speed, pressure in manufacturing process, gas turbine startup, etc.

Waveform (consider multiple period together)
- Vibration sensors, acoustic sensors
Outline

- Introduction
- Data characteristics
- Application & domain
- Feature extraction methods
- Feature dimensionality reduction
- Issues in real applications
- Summary
Properties of extracted features

- Ease of Explainability
- Handle Missing Data
- Ease of Maintenance
- Uncertainty Handling
- Subjective Opinions
- Data Property
- Domain Understanding
- Sample rate

Properties

- Presence
- Remarks

Yes

- Rule Out Black Box Methods
- Spatial Space Features
- Statistical Moments
- Bayesian Models /Rules

No

- Feature Space Transforms
- Pattern analysis methods
Application domain

Category
• Mechanical, structural, thermal, electrical, chemical, ...

Systems
• Machine tool, vehicle, aircraft, locomotive, wind turbine, construction machinery, ...

Common components
• Bearing, gearbox, motor, pump, engine, gas turbine, battery, ...

Many features extraction methods and data processing procedures come from domain know-how
Domain specific feature extraction

Failure Mode: depending upon the failure type, certain ratios, differences, DFEs, etc. are extracted for tracking over time.

Operating Mode: specific sensors can be more/less critical in different operating conditions of machines…
- raw sensors to be used for feature extraction…
- variances under different conditions itself can form basis for further feature extraction

Component Function: Features extracted on basis of knowledge about specific components for which PHM desired…

Known Relations: Certain relation types can be assumed between variables of interest…this can affect features calculated for those relations
Outline

• Introduction
• Data characteristics
• Application & domain
• Feature extraction methods
• Feature dimensionality reduction
• Issues in real applications
• Summary
Feature extraction method overview

- **Data descriptive statistics**
 - For sensors: RMS, variance, kurtosis, crest factor, correlation coefficient, ...
 - For events: count, occurrence rate, duration, time delays, ...

- **Data descriptive models**
 - Distribution models: Parametric distributions, histogram, ...
 - Information-based models: mutual information, minimal description length, ...
 - Regression models (use model parameters or modeling errors): curve fitting, AR models, ...
 - Classification/clustering models (use class label as feature), sequence matching likelihood

- **Time-independent transforms**
 - Explicit mathematical operations: difference, summation, ratio, logarithm, power n, ...
 - Principal component analysis, Independent component analysis, etc.

- **Time series transforms** (mainly for waveform signal)
 - Frequency domain, time-frequency domain, wavelet domain, EMD

- **Domain dependent feature extraction**
 - Physics based features: expected input-output or output-output relations, derived hidden states, etc.
 - Special procedures for data processing: operational regime segmentations, envelop analysis, etc.
Data descriptive statistics

For sensors:

- One variable: RMS, mean, variance, kurtosis, crest factor, peak2peak, auto correlation...

\[
\text{crest factor} = \frac{0.5(x_{\text{max}} - x_{\text{min}})}{\text{RMS}}
\]

- Two variables: cross correlation

For events:

- Count, occurrence rate, duration, time delays, ...

GE imagination at work
Data descriptive models

Distribution models:
• Parametric distributions, histogram, ...

Information-based models:
• mutual information, minimal description length, ...

Regression models (use model parameters or modeling errors):
• Curve fitting (linear, exponential, etc.), AR models, ...

Classification/clustering models (use class label as feature):
• Any pattern classifiers (Fisher discriminant, Bayes, etc.)
• Sequence matching likelihood
Time-independent transforms

Explicit mathematical operations:

- Difference, summation, ratio, logarithm, power n, ...

Data dimension reduction transforms:

- Principal component analysis, Independent component analysis, etc.

Notes: These transforms

- Do not alter the number of samples
- Are usually used to produce feature from features
Time series transforms

Methods mainly for vibration analysis/waveform data

Stationary signals

- Frequency domain
 - Spectral analysis
 - Envelope analysis
 - Cepstrum analysis
 - Higher order spectrum

Non-stationary signals

- Time-frequency
 - Short-time Fourier Transform (STFT)
 - Wigner-Ville distribution (WVD)
 - Empirical mode decomposition (EMD)
 - Spectral kurtosis
 - Cyclostationary analysis

- Wavelets
 - Continuous wavelet transform (CWT)
 - Discrete wavelet transform (DWT)
 - Wavelet packet transform
 - Morlet wavelet
 - Hilbert-Huang transform
Feature extraction ≠ vibration analysis

- **vibration signals**
 - Signal processing
 - **vibration analysis**
 - Time domain
 - Freq. domain
 - Time-Freq domain

- **Scalars**
 - RMS, kurtosis, etc

- **Vectors**
 - Spectrum, etc

- **Matrices**
 - Wavelet coef map, etc

- **direc**
 - **domain**
 - Specific
 - **statistic**
 - **image processing**

features
Domain dependent feature extraction

Physics based features

• Simple input-output or output-output relations
• Errors between model output and observations
• Estimated unobservable states
• System identification parameters

Special procedures for data preprocessing

• Time synchronous averaging
• Enveloping/demodulation
• Operational regime segmentation
• ...

Model based FDI approaches
Domain dependent feature extraction: an example for bearing

Bearing characteristic frequencies

Outer Race (BPFO) = \(\frac{N}{2} \left(1 - \frac{D_b}{D_p} \cos \theta \right) \times f_{sh} \)

Inner Race (BPFI) = \(\frac{N}{2} \left(1 + \frac{D_b}{D_p} \cos \theta \right) \times f_{sh} \)

Ball / Roller (BSF) = \(\frac{D_p}{2D_b} \left(1 - \left(\frac{D_b}{D_p} \cos \theta \right)^2 \right) \times f_{sh} \)

Cage (FTF) = \(\frac{1}{2} \left(1 - \frac{D_b}{D_p} \cos \theta \right) \times f_{sh} \)

\(N \) – number of rotating elements
\(D_b \) – rolling element diameter
\(D_p \) – pitch diameter of rolling elements
\(\theta \) – contact angle
\(f_{sh} \) – shaft speed (Hz)

RMS
Kurtosis
Crest factor etc.

Envelope analysis

Demodulated signal

Discrete Fourier transform

Discrete Fourier transform

Energy of characteristic frequencies,
Spectral kurtosis etc.
Domain dependent feature extraction: an example for gearbox

- **Raw Vibration signal**
 - Signal conditioning
 - DC offset removal
 - Conditioned raw signal
 - TSA signal
 - Remove fundamental shaft and mesh frequencies and harmonics
 - NA4, NA4*
 - Difference signal
 - Band pass mesh signal
 - Band-pass around fundamental mesh frequency including sidebands
 - NB4

- **Tacho signal**
 - Time Synchronous Averaging
 - Residual signal
 - Remove first order side bands
 - FM0

Requirements/limitations of algorithms

Examples of what a feature extraction algorithm may care

• Continuous value?
• Evenly sampled data?
• Missing data handled first?
• Waveform? e.g. frequency domain analysis applicable?
• Presence of special signals? e.g. to apply Time Synchronous Averaging (TSA), Tacho & Vibration signals are required
• One, or two, or more sensors together? e.g. to apply correlation, PCA
• Similar measurements? e.g. to apply mathematical difference
Exhaustive feature generation

Data

Algorithm

Application & Domain

Reasoning/prediction engine

Features to extract
Outline

• Introduction
• Data characteristics
• Application & domain
• Feature extraction methods
• Feature dimensionality reduction
• Issues in real applications
• Summary
Feature extraction process

Raw data/preprocessed data → Feature generation → Feature set

- **Data representation:**
 - Varying format: 1-D, 2-D time series, events, ...
 - With exhaustive or ad hoc approach
 - Dimensionality may reduce or increase
 - Incorporate domain knowledge
 - Underlying physical phenomenon

- **Feature representation:**
 - A scalar or vector per feature
 - One vector concatenating all features
 - One matrix holding all samples of features

Two approaches
- **Select** a subset of generated features
- **Transform** the features to another space with lower dimensions
Feature selection: what are good features

Desired characteristics of features

- High relevance to the objective, e.g., anomaly detection, diagnosis, degradation, PoD/FDR, etc.
- Low redundancy (linearly independent) among the features

Additional characteristic that are frequently overlooked

- Low relevance to non-objective factors, e.g. across assets, environment, usage pattern/ operating conditions, etc.
Feature selection strategies

Filter approach
- Metrics defined using local criteria different from the target models
- Search for ‘Good’ representation of raw data/features
- Computationally less-expensive

Wrapper
- Metrics defined by the performance (accuracy) of the target models
- ‘Application’ specific
- Computationally expensive

Embedded approach
- Feature selection built into the target model
- Regression: sparse regression, LASSO, etc.
- Classification: decision tree, regularized random forest
Filter approaches

Search methods
- Exhaustive
- Heuristic
- Random
- Sequential

Evaluation criteria
- mRMR (Minimum-redundancy-maximum-relevance)
- Fisher score
- Gini score
- Kruskal Wallis statistics

GE imagination at work
Feature transformation

Linear
- PCA (Principal Component Analysis)
- ICA (Independent component analysis)
- LDA (*Latent Dirichlet Allocation*)
- Latent semantic indexing
- Genetic Programming

Non-linear
- NPCA or KPCA
- NLDA or KLDA
- MDS (Multidimensional scaling)
- Principal curves
- Neural networks
- Genetic Programming
Outline

• Introduction
• Data characteristics
• Application & domain
• Feature extraction methods
• Feature dimensionality reduction
• Issues in real applications
• Summary
Issues in real applications

Issues:

• Features have high inconsistent (seemingly noisy) due to
 • Varying operating conditions
 • Asset-to-asset variations
• Features have low sensitivity to faults or degradation

Handling methods

• Normalization / Standardization
• Feature of features (find generalizable features)
• Operating condition clustering & time series segmentation
• Use of local models for post-feature-extraction processing
Example: aircraft engine

Domain: Aircraft engine

Signals:

• Operational variables: altitude, speed, thrust, ambient temperature

• Measurements: pressure, temperature at multiple location inside the engine

Feature extraction:

• Average of each signal during flight cruise (steady state).

• One feature vector per flight; one scalar per signal channel

Ref: 2008 PHM data challenge
Example: aircraft engine (2)

Run-to-failure time series of one feature: line plot

Seemingly random noise when considering the features time series as a whole

Run-to-failure time series of the same feature: dot plot

Trend more clear under each operating condition

Ref: 2008 PHM data challenge
Example: aircraft engine (3)

Handling methods:
- Feature normalization
 - with physics model
 - with data-driven model
- Use of local models /multiple models for follow-up procedures
- Generate feature of features that is invariant to operating conditions

Ref: 2008 PHM data challenge

Run-to-failure time series of the same feature: dot plot

Trend more clear under each operating condition
Key takeaways

• Procedure: feature extraction + dimension reduction
• What to extract: data property vs. application domain vs. algorithm requirements
• Feature extraction vs. signal processing
• Feature goodness: relevance and redundancy
• Feature selection: wrapper approach vs. filter approach
• Feature consistency and sensitivity issues
A Tutorial on Feature Extraction Methods

Tianyi Wang
GE Global Research

Subrat Nanda
GE Power & Water

September 24, 2012