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What is Feature Engineering?

Feature engineering is the process of transforming raw data into features
that better represent the underlying problem to the predictive models,
resulting in improved model accuracy on unseen data.

-Jason Brownlee, Machine Learning Mastery

Feature engineering is manually designing what the input x's should be.
- Tomasz Malisiewicz, vision.ai Co-founder

Feature engineering is the process of using domain knowledge of the
data to create features that make machine learning algorithms work

better
- Wikipedia

Feature engineering is the act to inject knowledge into a machine learning
model
- Anonymous
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What is Feature Engineering?

Predictive Modeling Pipeline Model
‘ Updating |
DB
Data i Feature i Model : Model

The FE process includes:

Remove unnecessary and/or redundant variables

Modify variable data types, e.g., from categorical to numeric
Combine some of existing variables

Create new features

Transform features
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Feature engineering is important ...

“Coming up with features is difficult, time-consuming, requires
expert knowledge. “Applied machine learning” is basically
feature engineering.”

—Andrew Ng, Stanford University

“At the end of the day, some machine learning projects succeed
and some fail. What makes the difference? Easily the most
important factor is the features used.”

- Pedro Domingos, University of Washington
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Feature engineering is hard and time-
consuming ...

Yoshua Bengio

* Good input features essential for successful ML

(feature engineering = S0% of effort in industrial ML)
« Handcrafung features vs learning them

 Representation learning

“Good input features are essential for successful machine

learning. Feature engineering = 90% of effort in industrial
machine learning”

-Yoshua Bengio, University of Montreal
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Feature learning alleviates some
difficulties of feature engineering ...

Deep Learning learns layers of features
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... but finding a set of good features is still
an unsolved problem
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Outline

[ Big picture
O Feature engineering
O (Shallow) Feature learning

[ Deep feature learning
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Big picture

Feature Engineering

Feature Learning

Feature Feature dim.
extraction reduction
Many ways to v v
categorize Feature Feature low-
the methods selection dim projection

» Knowledge based

* Manual, labor intensive

« Domain/problem specific
* Not scalable

imagination at work

Shallow feature Deep feature

learning learning
Supervised Unsupervised
+ Multiple kernel learning + Deep autoencoder
* Neural networks » Deep RBM
* Transfer learning + Deep spare coding
Unsupervised Supervised
 Clustering * Deep CNN
* Nonlinear embedding + Deep RNN
* Matrix factorization + Deep ELM
« SOM

* Genetic programming
» Sparse coding

v Data driven
v Automated

v Generic
v' Scalable
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Feature Engineering (FE)
(knowledge based)

Feature Engineering \ ’

Feature
extraction

Feature Learning ‘

Deep feature
learning

Feature dim.

reduction

)) imagination at work

* Clustering

* Nonlinear embedding
* Matrix factorization

. Sc[.ﬂ

C programming

e coding

Supervised Unsupervised
Manv wavs to * Multiple kernel learning * Deep autoencoder
coteygorige A J Y * Neural networks * Deep
Feature Feature low- * Transfer learning * Deep spare coding
the methods selection dim projection Unsupervised Supervised

* Deep CNN
* Deep RNN

* Deep ELM
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Characteristics of FE

Manual, ad hoc
Time-consuming

Domain/application specific (as supposed
to data specific in feature learning)

Not optimal
Not scalable

Domain specific: features in one domain do not generalize to other domains

Domains:

| PHM

« Computer vision

« Speech recognition
« Text analytics

* Business analytics

imagination at work

PHM applications:

| Vibration analysis

e SHM

e Turbine machines
* Electrical systems
* Electronic devices
* Batteries

——» Vibration analysis
* Bearings
* Gears
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FE - Feature extraction

o

\D Different Technologies
* Statistical analysis

* Signal processing

» Image processing

» Time-series analysis

+ Control theory

¢ Information theory

e =

O
Different data types
» Continuous
 Categorical
* Binary

N

Univariate vs.
multivariate

imagination at work

o

D leferent PHM applications

Vibration analysis
Turbine machines
Electrical systems
Electronic devices
Batteries

SHM

o)

Time dependency

 Time independent (stationary)
» Time dependent (non-stationary)

Different data
sampling rate
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Example: Feature extraction for
vibration analysis

Stationary signals

2

.

Non-stationary signals

.

.

Time domain

Frequency domain

Time-frequency

Wavelets

» Statistical-based
- RMS
- Variation
- Skewness
- Kurtosis
- crest factor

e Model-based

- AR model
- HMM model

» Signal processing
-TSA
- Correlation
- Convolution
- Fractal analysis

- Correlation dimension

imagination at work

e Spectral analysis
 Envelope analysis

e Cepstrum analysis

e Higher order spectrum

¢ Short-time Fourier
Transform (STFT)

» Wigner-Ville
distribution (WVD)

e Empirical mode
decomposition (EMD)

* Basis pursuit
e Spectral kurtosis

e Cyclostationary
analysis

e Continuous wavelet
transform (CWT)

e Discrete wavelet
transform (DWT)

* Wavelet packet
transform

e Morlet wavelet

e Hilbert-Huang
transform

Yan, W. et al, 2008
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FE - Feature dim. reduction

Feature dimensionality reduction

Feature selection

Filter approaches

Feature low-dim projection

Optimal
o) .
'g Heuristic
% Random
E| Weight-
S based
5 >
3 , gf’ '
& Q .o{\ &
S
< N S $
Sy N L
FFL SRS
§ 0O LT &
< 9

Evaluation criteria

imagination at work

Wrapper approaches Embedded approaches
Ontiral * Ridge regression
3 Hpt'rT‘c'_ « LASSO
< euristic * Decision trees
o| Random
£ ) e Random forest
|  Weight- .
Y| based
S o
(7] Ao o(‘
(9] NN
LSS0
SIS
FeE
T ¢ O

Yan, W. et al, 2008

Linear

Non-linear

* PCA
e LDA
e ICA
e Projection pursuit

¢ Latent semantic
indexing

e NPCA or KPCA

e NLDA or KLDA

e MDS

e Principal curves

¢ Neural networks
13
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(Shallow) Feature Learning (FL)
(data driven)

imagination at work

Feature Engineering

Featu re\ga rning

Feature Feature dim.
extraction reduction
Many ways to v
categorize Feature Feature low-

the methods

selection dim projection

Deep feature

Shallow feature
learning

learning
Supervised $upervised
* Multiple kernel learning * DPeep autoencoder
* Neural networks . ep RBM

* Transfer learning
Unsupervised

Peep spare coding
Supervised

Clustering * [Deep CNN
Nonlinear embedding * [Deep RNN
Matrix factorization */ Deep ELM

Genetic programming

* SOM
* Sparse coding
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Shallow feature learning

Including many unsupervised learning, manifold learning, and low-dim
projection algorithms

A Clustering, e.g., k-means, GMM

 Matrix factorization, e.g., PCA, ICA, NMF, sparse
coding

[ Nonlinear embedding, e.g., isomap, LLE, Laplacian
eigenmaps, etc., - manifold learning

d Neural networks, e.g., SOM, autoencoder
1 Genetic programming

1 Sparse coding / dictionary learning
a ..
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Shallow feature learning
- k-means clustering

K-means
clustering

Project to k
cluster center

T

— T W e WA
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Shallow feature learning
- genetic programming (GP)

GP algorithm

Initial population

v

Evaluation O >
1 ) D D ©
Reproduction E> DD G @59 G2

v

Modification

\V4
Best solution
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Shallow feature learning
- sparse coding

Learned bases (¢; _¢g,): “Edges”

Natural
Images

Test example

~ (0.8 * + 0.3 % Py + 0.5 *

[0,0, ..., 0, 0.8, 0,..,00.3,0,..0, 0.5, ..] feature representation

\ imagination at work 18
PHM 2015

Lee, et al, NIPS 2007 11/4/15



Deep Feature Learning (FL)
(data driven)

N\

=
Feature Engineering Feature)./c;arnmg
/
Feature Feature dim. Deep feature
extraction reduction learning
Supervised Unsupervised
Many ways to * Multiple kernel learming  + Deep autoencoder
) * Neural networks * Deep RBM
c:tegor:ed Feature Feature low- « Transfer learning + Deep spare coding
the methods selection dim projection Unsupervised Supervised
* Clustering * Deep CNN
* Nonlinear embedding * Deep RNN
* Matrix factorization * Deep ELM
* SOM
* Genetic programming
* Sparse coding
imagination at work 19

PHM 2015
11/4/15




What is Deep Learning?

Deep learning is a part of broader family of machine
learning methods that involve learning multiple levels of
representations of data

Deep learning = representation learning

All deep learning is representation learning, but

Not all representation learning is deep learning

Deep learning # unsupervised learning

Not all unsupervised learning is deep learning

Not all deep learning is unsupervised learning
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Deep learning in the news

I 10 BREAKTHROUGH
222l TECHNOLOGIES 2013 | 0 V21 18 ) (G —

Home | News & Comment ‘ Research | Careers & Jobs | Current Issue | s | Audio & Video
Deep Take part in Nature Publishing Group's annual reader survey here for the chance to win a Macbook Air.

Learning NATURE | INSIGHT | REVIEW <

With massive Deep learning
amounts of
. Yann LeCun, Yoshua Bengio & Geoffrey Hinton
computational power,
machines can now Affiliations | Corresponding author
recognize objects and
translate speechin Nature 521, 436-444 (28 May 2015) | doi:10.1038/nature14539
real time. Artificial Received 25 February 2015 | Accepted 01 May 2015 | Published online 27 May 2015
intelligence is finally
getting smart.
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Deep learning in the news

’ = SECTIONS @ HOME Q seARrcH

Ehe New lork Times

SCIENCE

Scientists See Promise in Deep-Learning Programs

By JOHN MARKOFF NOV. 23, 2012

2/19/2015 @ 1:06PM | 6,601 views

Microsoft's Deep Learning

Project Outperforms Humans In
Image Recognition

IBM acquires AlchemyAPI to bring
deep learning to Watson

Deep Learning Machine Beats Humans in 1Q Test
and performs between bachelor and masters

degree level

flL ] Bl S

Published On: Sun. Jun 21st. 2015 Technology / Technology & StartUps / World | By News Brief

Facebook’s Newest Deep Learning System Makes

Images That Humans Think Are Real 40% Of The
Time

_Ll AL | Pinit
— - =

3/24/201S @ 10:14AM | 8,105 views

NVIDIA GTC: NVIDIA Bets Big
On Deep Learning

imagination at work
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Deep vs. shallow neural networks

Two-layer (plus input layer) neural networks
are an universal approximator

Why deep?

Given the same number of non-linear (neural network) units, a deep
architecture is more expressive than a shallow one (Bishop 1995)

Some functions compactly represented with k layers
RO may require exponential size with 2 layers o

11/4/15



... However, deep networks have
challenges

O Needs labeled data (most data is not labeled)

O Scalability - does not scale well over multiple
layers
= Very slow to converge
= “Vanishing gradients problem” : errors shrink
exponentially with the number of layers
O For more: “Understanding the Difficulty of
Training Deep Feed Forward Neural Networks":

http://machinelearning.wustl.edu/mlpapers/paper files/
AISTATS2010 GlorotB10.pdf
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The deep breakthroughs

dHinton, et al, 2006, “Reducing the dimensionality
of data with neural networks”, Science, 2006

dBengio, et al, 2006 “Greedy layer-wise training of
deep networks”, NIPS 2006

dLeCun, et al, 2006, “Efficient learning of sparse
representation with an energy based model”, NIPS
2006

« Stacked RBMs or AE
Layer-wise training with unlabeled data
(unsupervised learning)

* Fine tuning with labeled data
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Going deep

googleNet (2014 imageNet competition)

# of layers = 27
Overall # of layers (independent building blocks) = 100
Total # of tunable parameters = 5SMM+

Source: “Going deeper with convolutions”, Szegedy, et al., CVPR 2015
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Going deeper and deeper...

< 11.2 billion parameters by Google

<~ 15 billion parameters by Lawrence Livermore
National Lab

<> 160 billion parameters by Digital Reasoning
<> 777



Deep learning has achieved state-of-
the-art performance in different areas

Speech recognition

deep learning results ImageNet competition

task hours of DNN-HMM | GMM-HMM Descrlptlon
training data with same data

Switchboard (test set 1) | 309 18.5 274

. U. Toronto 0.15315 Deep learning
Switchboard (test set 2) | 309 16.1 236
English Broadcast News | 50 17.5 188 7 i TOI(\/O 0.26172 Hand-crafted
Bing Voice Search 24 30.4 362
e ] U Odord 0.26979 featuresand

entence error rates | :

earning models.

Google Voice Input 5,870 12.3 4 Xerox/INRIA 0.27058 Bott] & ’
Youtube 1,400 47.6 523 ottieneck.

Deep learning won all competitions

1.
2.
3.

IJCNN Traffic Sign Recognition Competition, 2011
ISBI Brain Image Segmentation Contest, 2012
ICDAR Chinese hand-writing recognition, 2011

4. MICCAI Mitosis detection grand challenge, 2013

imagination at work
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Deep learning applications (products)

d IBM Watson

d Google self-driving cars

A Google Glasses

[ Facebook Face recognition
[ Facebook user modeling

A Microsoft natural language processing
3 Apple Siri

Deep learning has not been used for PHM applications
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Unsupervised vs. supervised

O Unsupervised

* Deep auto-encoder and its variants (AE, DAE, SAE)
» Deep Restricted Boltzmann machines (RBM)
« Deep sparse coding (DSC)

Explicit feature
learning

O Supervised
« Convolutional neural networks (CNN) imolicit feature
« Deep recurrent neural networks (RNN) P

» Deep extreme learning machines (ELM) SEIUITE

Hybrid: Unsupervised pre-training + supervised fine tuning
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Unsupervised deep feature learning is
interesting and useful...

In most real-world applications, PHM included, labeled data
is sparse (difficult to obtain), while unlabeled data is
abundantly available

Input data

3rd layer
“Objects”

2nd layer
“Object parts”

1st layer
llEdgesll

Pixels H. Lee (2010)

@
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Unsupervised feature learning did well

-

" Audio

| TIMIT Phone classification | Accuracy | | TIMIT Speaker identification

Prior art (Clarkson et al.,1999) 79.6% Prior art (Reynolds, 1995) 99 7%

Stanford Feature learning 80.3% Stanford Feature learning 100.0%

Images

| CIFAR Object classification | Accuracy || NORB Object classification | Accuracy _
Prior art (Krizhevsky, 2010) 78.9% Prior art (Ranzato et al., 2009) 94 4%
Stanford Feature learning 81.5% Stanford Feature learning 97.3%
Video

YouTube | Accuracy |
Prior art (Laptev et al., 2004) 48% Prior art (Liu et al., 2009) 71.2%

Stanford Feature learning Stanford Feature learning

KTH | Accuracy | |UCF_______________| Accuracy_

Prior art (Wang et al., 2010) Prior art (Wang et al., 2010)

Stanford Feature learning Stanford Feature learning

Multimodal (audio/video)

. . Other unsupervised feature learning records:
AVLettors Lipireading Pedestrian detection (Yann LeCun)
Prior art (Zhao et al., 2009)

58.9% Different phone recognition task (Geoff Hinton) Andrew Ng.,

Stanford Feature leaming 65.8% PASCAL VOC object classification (Kai Yu) ICML 2011
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Why unsupervised feature learning
works - a simple explanation

pixel 1

handle

> Feature

wheel

|nput pixel 2

Input space
M = +
~d
2| -
= = P
‘ [
pixel 1

@ imagination at work

representation

5B Motorbikes
=m “Non”-Motorbikes

“handle”

L

» | Learning

algorithm

Feature space

N G
,
\\
\\ ‘ +
-
m Y ‘
\
L
- -
i
[ ] \\

“wheel” H. Lee (2010)

33
PHM 2015

11/4/15



Auto-encoder - one of the popular DL
building blocks

AE: a MLP with output being equal to input

y=s;(W'h+b,)

h(x) = sg(Wx + bp)

L(x,y) = _Z(xi —v)? or L(xy)= —inlog(yi) + (1 —x)log(1 —y;)
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Deep AE

Unsupervised

O O--000
000
T O O
(O-++() < Features
T OO
OO--00
OO0 O

imagination at work

decode

encode

Supervised

35
_ PHM 2015
Vincent et al. (2010) 11/4/15



Denoising autoencoder (DAE)

}_f
OO0 Li(x.2)
- - - S
- b
- ~
- .

XOXOO—2 {[O0000) (OOOOO]

Vincent et al. (2010)

o]

3 different corruption processes:
1. Gaussian noise
2. Masking noise
3. Salt-and-pepper noise
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Stacked DAE

Ly

2 g
O OXR=2 000
Jo Jo So
(OO0O0O0] (OOO0O0O0)] O0000)

Vincent et al. (2010)

2 design settings:
1. Unsupervised feature learning + standalone supervised
learning
2. Deep neural network: add logistic regression on top of
encoder and supervised fine tune all parameters
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A deep feature learning example:
Combustor anomaly detection
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Gas Turbine Combustor Anomaly Detection

CMS POD Per Failure Mode

The business pain points

* Current rule-based engine has an insufficient detection rate (*)
* Finding a good set of features (Feature Engineering) takes significant
amount of effort

« Labeled data, especially faulty data, is extremely sparse and difficult to
get
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The Data

* Single turbine (TSNXxxxxxx)

« Normal (event-free) data: 3 months of data (once per minute)
« POD events: 10 events occurred over 4-month window

« 27 sensor measurements (TC readings)

 Data matrices:

13,791 x 27 - normal data for feature learning
300 x 27 - POD events(*) (*) For POD cases, take 30 points before the POD events

47,575 x 27 - normal data for model building & validation

27
26
- : e | 25
[ D F H ] v AD AF AH Al a [5 24
| 1 [oaTETIME FRAME_SIZE DWATT TNH  CTIM  FSR TIXM  TTXD11 TTXD1 2 TIXD1 3 TTXD14 TTXD1 31T
2 | 11/25/20088:07] 31 219.8903 100.1558  S$5.687 69.3357 1112302 1112.312 1134.034 1120.375 1105458 1108.387 23
| 3 | 11/25/2008 8:08] 31 2209718 1000913  55.687 70.0018 1110597 1112.735 1133.405 111549 1104.331 1104.749 A 2
4 | 11/25/2008 8:09| 31 2234145 1000229 55.687 702342 1105279 1114424 113171 1118.676 1106.657 1100523 21
|5 | 11/25/20088:10] 31 218828 999799  55.687 69.6164 1106798 1115.254 1131391 1119.415 1105525 1100.779
6 | 11/25/20088:11) 31 2210307 99.9828 55.687 69.2105 1109.786 1115375 1134.175 1118.054 1107.66 1097.373 20
| 7 | 11/25/20088:12] 31 2206186 99.9287 55.687 69.7707 1106.958 1116343 1134356 1122.108 1110.138 1100522 19
8 | 11/25/20088:13) 31 223.9217 99.9166 56.0285 70.6263 110425 1119.761 113219 1116.653 1109.823  1099.3
|9 | 11/25/20088:14) 31 22859 999621 5625 717065 110425 1117.373 1131362 1113.694 1107.017 1098.25 18
|10 11/25/20088:15| 31 229.6503 99.9233 5625 717174 1103.027 1113.976 1132.207 1114.548 1105.591 1097.803 17
(1] 2 31 2345109 99.847 5625 728794 1101.007 1116.375 1133.954 1115119 1104.209 1096.038
12| 11/25/20088:17) 31 2349462 99.8767 5625 73.1149 1099.609 1116812 113045 1113.04 1101437 1095.958 16
|13 11/25/2008 8:18] 31 235.3589 99.8815 563214 73.5001 1100.884 1116.812 1131.367 1113.815 1102152 1101533 15
|14 11/25/2008 8:19 31 2345679 99.8425 565169 73.0334 1102.334 1112598 1129.075 1114.583 1105548 1101812 14
15| 11/25/2008 8:20) 31 2339119 99.8412 56719 724734 1103.607 1119.49 1138619 1114.423 110695 1104.062
|16 | 11/25/2008 8:21] 31 2337544 99.8278 5675 729717 1105574 1119.392 1139.023 1115.398 1105812 1103.58 13
17| 11/25/20088:22) 31 233502 99.7781 5675 73.1751 1107.437 1117.123 1135523 1111.589 1106302 1102.041 12
18| 11/25/20088:23) 31 234795 997564 57.2107 73113 1103.687 1114.212 1132.843 1114.359 1104388 1103.131
19| 11/25/20088:24 31 232719 99.8743  57.312 723429 1102888 1115.448 1131.836 1115.087 1105.102 1100.934 1
20| 11/25/2008 8:25| 31 230.3984 1000235 57.312 719526 1105.043 1117.766 1132.257 1115891 1107.41 1099.812 10
21| 11/25/2008 8:26) 31 237.0156 99.9282 57.6443 73.8844 1106228 1118.984 1133.703 1117.347 1106412 1101.83 9
| 22 11/25/2008 8:27] 31 234.8176 99.8432 57.5768 74.3757 1105313 1117.719 1137.086 1116.618 1105.033 1101.969
23| 11/25/2008 8:28) 31 2369975 997446 57.5797 73.7725 1103.247 1115.345 1131.077 1114.447 1104557 1099.165 8
| 24| 11/25/2008 8:29] 31 2337052 99.7289 57.9898 724532 1105452 1116306 1136.027 1113.364 1105.217 1101277 # 7
|25 | 11/25/2008 8:30) 31 240022 99745 582044 75.1092 1106429 1118472 1132.367 1116.665 1108.039 1101312
26| 11/25/20088:31) 31 237.3279 99.8244 58.3668  74.432 1102158 1115.047 1130.387 1118.242 1112933 1100.18 6
|27 11/25/20088:32) 31 243.6803 99.9671 58.1284 7573 1102986 1113.423 1128.589 1113.635 110157 1102.748 ( ) 5
28 | 11/25/2008 8:33] 3124275 1001298 58.3311 75.4915 1104111 1117.746 1132.027 1117.195 1103129 110646 _~
W 4> N 207566_18 /%3 0E] o] | I_ 4
| Ready | Average: 3979016894  Count: 36953  Sum: 1470326323 | (B[] (@ 100% (=) ) o 3
2
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EXPe rl me nt Setu p - Unsupervised feature learning

Our goal is to compare learned features against handcrafted

features in terms of classification performance

Knowledge-driven,
handcraftin

Feature
matrix

Multivariate

time-series data Classification

T
MijJMkW il

I M Ttz

i f"»mmwww..... sl
4rﬂmwwwmwwwmmwwMWWMwm o)

Featu re
matrix

>
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Domain-driven, handcrafted features

T T T 7 T T T T T T T 1 T 1 T T T T T T T T T T T

A sample TC profile

Extracted 12 features

1 DWATT

2 TNH

3 max

4 mean

5 std

6  median

7 #diff b/w positive & negative TCs
8  zero crossing

9  kurtosis

imagination at work 10  skewness i
, 11  max of 3-pt sum PHM 2015
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Deep feature learning

Layer 1 DAE ELM classifier

12 learned features

50 50

imagination at work GETitle o fob b43
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Learned features

F1 F2

F9 F10

F3

F11

F4

F12




Classification Modeling and Results

Modeling details:

* ELM (a special type of feed-forward Neural network) as the classifier
* Unbalanced data strategy: sample weighting

« Validation method: 5-fold cross-validation (10 times of random runs)

{ SDAE \ ELM \

| DAE1 | DAE2 |
50

Sensitivity

—*Using handcrafted features
—* Using DL learned features

0 0.02 0.04 0.06 0.08 0.1
1-specificity

Deep learning can learn features that give much better detection o 45
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Final Remarks -1

Predictive Modeling Pipeline

Model
‘ Updating |
DB
Data Feature Model Model

B Feature discovery (both FE and FL) is more important
than model building, yet it is less well-studied.

B Feature discovery, not model building, can be the
differentiator.

\ imagination at work 46
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Final Remarks - 2

B Traditional knowledge-driven feature engineering is hard and
time-consuming, thus is insufficient.

B Feature learning, especially recently-developed deep feature
learning, is data-driven, and has some potential in alleviating
difficulties faced in FE.

2 directions worth pursuing:

< Integrating domain knowledge into feature learning (R)

< Tools that can automate feature discovery (D)

1 question to be answered:
oS d€€p learning effective for PHM applications?
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W?w
Questions?

My contact information:
Dr. Weizhong Yan
Principal Scientist

Machine Learning Lab
GE Global Research Center

. o Email: yan@ge.com
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