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What is Feature Engineering?	


Feature engineering is the process of transforming raw data into features 
that better represent the�underlying problem to the predictive models, 
resulting in�improved�model accuracy on unseen data.  
-Jason Brownlee, Machine Learning Mastery 
 
Feature engineering is manually designing what the input x's should be.  
- Tomasz Malisiewicz, vision.ai Co-founder 
 
Feature engineering is the process of using domain knowledge of the 
data to create features that make machine learning algorithms work 
better  
-  Wikipedia 
 
Feature engineering is the act to inject knowledge into a machine learning 
model 
- Anonymous 
 
…	
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What is Feature Engineering?	


The FE process includes:  
o  Remove unnecessary and/or redundant variables  
o  Modify variable data types, e.g., from categorical to numeric 
o  Combine some of existing variables  
o  Create new features  
o  Transform features 
o  … 
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Feature engineering is important …	


“Coming up with features is difficult, time-consuming, requires
 expert knowledge. “Applied machine learning” is basically
 feature engineering.”  
— Andrew Ng, Stanford University	


“At the end of the day, some machine learning projects succeed
 and some fail. What makes the difference? Easily the most
 important factor is the features used.”   
- Pedro Domingos, University of Washington 
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Feature engineering is hard and time-
consuming …	


“Good input features are essential for successful machine
 learning. Feature engineering ≈ 90% of effort in industrial
 machine learning”    
–Yoshua Bengio, University of Montreal 
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Feature learning alleviates some 
difficulties of feature engineering …	


… but finding a set of good features is still 
an unsolved problem	


Source: 
dataRobot.com 
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Outline	


p Big picture 

p Feature engineering 

p  (Shallow) Feature learning 

p Deep feature learning 
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Big picture 

Feature dim.
 reduction 

Shallow feature
 learning 

Deep feature 
learning 

Feature
 extraction 

Feature
 selection 

Feature low-
 dim projection 

•  Knowledge based 
•  Manual, labor intensive 
•  Domain/problem specific 
•  Not scalable 

ü  Data driven 
ü  Automated 
ü  Generic 
ü  Scalable 

Feature Learning 

Unsupervised 
•  Deep autoencoder 
•  Deep RBM 
•  Deep spare coding 
Supervised 
•  Deep CNN 
•  Deep RNN 
•  Deep ELM 

Supervised 
•  Multiple kernel learning 
•  Neural networks 
•  Transfer learning 
Unsupervised 
•  Clustering 
•  Nonlinear embedding 
•  Matrix factorization 
•  SOM 
•  Genetic programming 
•  Sparse coding 

Feature Engineering 

Many ways to
 categorize
 the methods	
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Feature Engineering (FE)  
(knowledge based) 
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Characteristics of FE 
•  Manual, ad hoc 
•  Time-consuming 
•  Domain/application specific  (as supposed

 to data specific in feature learning) 
•  Not optimal 
•  Not scalable 

Domains: 
•  PHM 
•  Computer vision 
•  Speech recognition 
•  Text analytics 
•  Business analytics 
•  …. 

PHM applications: 
•  Vibration analysis 
•  SHM 
•  Turbine machines 
•  Electrical systems 
•  Electronic devices 
•  Batteries 
•  …. 

Vibration analysis 
•  Bearings 
•  Gears 
•  …. 

Domain specific: features in one domain do not generalize to other domains 
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FE - Feature extraction 

Different PHM applications 
•  Vibration analysis 
•  Turbine machines 
•  Electrical systems 
•  Electronic devices 
•  Batteries 
•  SHM 

Different data types 
•  Continuous 
•  Categorical 
•  Binary 
•  … 
 

Time dependency 
•  Time independent (stationary) 
•  Time dependent (non-stationary) 

Different Technologies 
•  Statistical analysis 
•  Signal processing 
•  Image processing 
•  Time-series analysis 
•  Control theory 
•  Information theory 
 

Univariate vs.
 multivariate 
 

Different data
 sampling rate 

… 



12  
PHM 2015 

11/4/15 

Example: Feature extraction for 
vibration analysis 

Time domain Frequency domain Time-frequency 

•  Statistical-based 
  - RMS 
  - Variation 
  - Skewness 
  - Kurtosis 
  - crest factor 

•  Model-based 
   - AR model 
   - HMM model 

•  Signal processing 
  - TSA 
  - Correlation 
  - Convolution 
  - Fractal analysis 

  - Correlation dimension  

•  Spectral analysis 
•  Envelope analysis 
•  Cepstrum analysis 
•  Higher order spectrum 

•  Short-time Fourier 
Transform (STFT) 
•  Wigner-Ville 
distribution (WVD) 
•  Empirical mode 
decomposition (EMD) 
•  Basis pursuit 
•  Spectral kurtosis 
•  Cyclostationary 
analysis 

Stationary signals Non-stationary signals 

Wavelets 

•  Continuous wavelet 
transform (CWT) 
•  Discrete wavelet 
transform (DWT) 
•  Wavelet packet 
transform 
•  Morlet wavelet 
•  Hilbert-Huang 
transform 

Yan, W. et al, 2008	
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Filter approaches Wrapper approaches 

Linear 

•  PCA 
•  LDA 
•  ICA 
•  Projection pursuit 
•  Latent semantic 
indexing 

Feature selection Feature low-dim projection 

Non-linear 

•  NPCA or KPCA 
•  NLDA or KLDA 
•  MDS 
•  Principal curves 
•  Neural networks 

Feature dimensionality reduction 

 Optimal 
 Heuristic 
 Random 
 Weight-
based 

Se
ar
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ho

ds
 

Evaluation criteria 

 Optimal 
 Heuristic 
 Random 
 Weight-
based 

Se
ar

ch
 m
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ho

ds
 

Embedded approaches 

•  Ridge regression 
•  LASSO 
•  Decision trees 
•  Random forest 
•   … 

FE - Feature dim. reduction 

Yan, W. et al, 2008	
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(Shallow) Feature Learning (FL) 
(data driven) 
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Shallow feature learning 

q  Clustering, e.g., k-means, GMM 
q  Matrix factorization, e.g., PCA, ICA, NMF, sparse 

coding 
q  Nonlinear embedding, e.g., isomap, LLE, Laplacian 

eigenmaps, etc., – manifold learning 
q  Neural networks, e.g., SOM, autoencoder 
q  Genetic programming 
q  Sparse coding / dictionary learning 
q  … 

 

Including many unsupervised learning, manifold learning, and low-dim
 projection algorithms 
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Shallow feature learning 
- k-means clustering	


K-means
 clustering	


Project to k
 cluster center	


V1	
 V2	
 Vn	


f1	
 f2	
 f3	

V1	
 V2	
 Vn	
…	


…	
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Shallow feature learning 
- genetic programming (GP) 

X1 

X2 

X3 

Initial population 

Evaluation 

Reproduction 

Modification 

Best solution 

GP algorithm 
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Shallow feature learning 
- sparse coding 

Natural	
  
Images	
  

Learned	
  bases	
  (φ1	
  ,	
  …,	
  φ64):	
  	
  “Edges”	


≈ 0.8 *                   + 0.3 *                     + 0.5 * 

     x      ≈ 0.8 *       φ
36         +  0.3 *        φ42          

+ 0.5 *       φ63	
  

	
  [0,	
  0,	
  …,	
  0,	
  0.8,	
  0,	
  …,	
  0,	
  0.3,	
  0,	
  …,	
  0,	
  0.5,	
  …]	
  	
  feature	
  representa8on	
  

Test	
  example	


Lee, et al, NIPS 2007	




19  
PHM 2015 

11/4/15 

Deep Feature Learning (FL) 
(data driven) 
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What is Deep Learning? 

Deep learning   ≠  unsupervised learning 
Not all unsupervised learning is deep learning 

Not all deep learning is unsupervised learning 

Deep learning is a part of broader family of machine
 learning methods that involve learning multiple levels of
 representations of data 

Deep learning    ≈  representation learning 
All deep learning is representation learning, but 

Not all representation learning is deep learning 
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Deep learning in the news 
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Deep learning in the news 
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Deep vs. shallow neural networks 

Two-layer (plus input layer) neural networks 
are an universal approximator 

Why deep? 

Given the same number of non-linear (neural network) units, a deep 
architecture is more expressive than a shallow one (Bishop 1995) 

Some functions compactly represented with k layers
 may require exponential size with 2 layers	
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… However, deep networks have 
challenges 

p Needs labeled data (most data is not labeled) 
p Scalability – does not scale well over multiple 

layers 
ú  Very slow to converge 
ú  “Vanishing gradients problem” : errors shrink 

exponentially with the number of layers 

p For more: “Understanding the Difficulty of 
Training Deep Feed Forward Neural Networks”: 
http://machinelearning.wustl.edu/mlpapers/paper_files/
AISTATS2010_GlorotB10.pdf 
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The deep breakthroughs 

q Hinton, et al, 2006,  “Reducing the dimensionality
 of data with neural networks”, Science, 2006 

q Bengio, et al, 2006 “Greedy layer-wise training of
 deep networks”, NIPS 2006 

q LeCun, et al, 2006, “Efficient learning of sparse
 representation with an energy based model”, NIPS
 2006 

•  Stacked RBMs or AE 
•  Layer-wise training with unlabeled data

 (unsupervised learning) 
•  Fine tuning with labeled data  
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googleNet (2014 imageNet competition) 
# of layers = 27 
Overall # of layers (independent building blocks) = 100 
Total # of tunable parameters = 5MM+ 

Source: “Going deeper with convolutions”, Szegedy, et al., CVPR 2015 

Going deep 
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Going deeper and deeper… 

² 11.2 billion parameters by Google 

² 15 billion parameters by Lawrence Livermore 
National Lab 

² 160 billion parameters by Digital Reasoning 

² ??? 
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Deep learning has achieved state-of- 
the-art performance in different areas 

Deep learning won all competitions 
1.  IJCNN Traffic Sign Recognition Competition, 2011 
2.  ISBI Brain Image Segmentation Contest, 2012 
3.  ICDAR Chinese hand-writing recognition, 2011 
4.  MICCAI Mitosis detection grand challenge, 2013 

Speech recognition ImageNet competition  
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Deep learning applications (products) 

Deep learning has not been used for PHM applications 

q  IBM Watson 
q  Google self-driving cars 
q  Google Glasses 
q  Facebook  Face recognition 
q  Facebook user modeling 
q  Microsoft  natural language processing 
q  Apple Siri 
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Unsupervised vs. supervised 

q  Unsupervised 

q  Supervised 

Hybrid:  Unsupervised pre-training + supervised fine tuning 

•  Deep auto-encoder and its variants (AE, DAE, SAE) 
•  Deep Restricted Boltzmann machines (RBM) 
•  Deep sparse coding (DSC) 

•  Convolutional neural networks (CNN) 
•  Deep recurrent neural networks (RNN) 
•  Deep extreme learning machines (ELM) 

Explicit feature
 learning 

Implicit feature
 learning 
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Unsupervised deep feature learning is 
interesting and useful… 

In most real-world applications, PHM included, labeled data
 is sparse (difficult to obtain),  while unlabeled data is
 abundantly available 	


H. Lee (2010) 
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Unsupervised feature learning did well 

Andrew Ng.,
 ICML 2011	
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Why unsupervised feature learning 
works – a simple explanation 

H. Lee (2010) 
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Auto-encoder – one of the popular DL 
building blocks 

AE:  a MLP with output being equal to input 

𝑥 

𝑦=𝑥 

en
co

de
 

de
co

de
 

OR 
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Deep AE	


…	

…	

…	

…	


…	

…	

…	


Unsupervised	


Features	


Supervised	


Vincent et al. (2010) 
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Denoising autoencoder (DAE) 

Vincent et al. (2010) 

3 different corruption processes: 
1.  Gaussian noise 
2.  Masking noise 
3.  Salt-and-pepper noise 
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Stacked DAE	


Vincent et al. (2010) 

2 design settings: 
1.  Unsupervised feature learning + standalone supervised

 learning 
2.  Deep neural network: add logistic regression on top of

 encoder and supervised fine tune all parameters 
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A deep feature learning example:  
Combustor anomaly detection 
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Gas Turbine Combustor Anomaly Detection	


(*) Source: Reliability combustion events 2008-2010, with M&D
 data, covering 7&9 E & F class with full-load condition. 

•  Current rule-based engine has an insufficient detection rate  (*) 
•  Finding a good set of features (Feature Engineering) takes significant 

amount of effort 
•  Labeled data, especially faulty data, is extremely sparse and difficult to 

get 

The business pain points 
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•  Single turbine (TSNxxxxxx) 
•  Normal (event-free) data:  3 months of data (once per minute) 
•  POD events: 10 events occurred over 4-month window 
•  27 sensor measurements (TC readings) 
•  Data matrices: 

 13,791 x 27  - normal data for feature learning 
              300 x 27  - POD events(*) 

 47,575 x 27  - normal data for model building & validation 
 

(*) For POD cases, take 30 points before the POD events 

time 

TC
 #

 

The Data 
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Experiment setup 

Knowledge-driven, 
handcrafting 

Deep Learning 

Classification 
Multivariate 

time-series data 

Feature 
matrix 

Feature 
matrix 

- Unsupervised feature learning 

Our goal is to compare learned features against handcrafted 
features in terms of classification performance 
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1	
   DWATT	
  
2	
   TNH	
  
3	
   max	
  
4	
   mean	
  
5	
   std	
  
6	
   median	
  
7	
   # diff b/w positive  & negative TCs	
  
8	
   zero crossing	
  
9	
   kurtosis	
  

10	
   skewness	
  
11	
   max of 3-pt sum	
  
12	
   max of 3-pt median	
  

A sample TC profile 

Extracted 12 features 

Domain-driven, handcrafted features 
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Deep feature learning 

27 
50 

27 

50 
12 

50 

Layer 1 DAE 

Layer 2 DAE 
12

 le
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ELM classifier 

0 

1 
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Learned features 
F1 F2 F3 F4

F5 F6 F7 F8

F9 F10 F11 F12
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Classification Modeling and Results 
Modeling details: 
•  ELM (a special type of feed-forward Neural network) as the classifier 
•  Unbalanced data strategy: sample weighting 
•  Validation method: 5-fold cross-validation (10 times of random runs) 

ROC Comparison 

Using handcrafted features 
Using DL learned features 

Deep learning can learn features that give much better detection 
rate than manually-handcrafted features do 
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Final Remarks -1	


n  Feature discovery (both FE and FL) is more important 
than model building, yet it is less well-studied. 

n  Feature discovery, not model building, can be the  
differentiator. 

DB 

DB DB 
Data	
  

cleansing 
Feature	
  
Discovery 

Model	
  
Building 

Model	
  
Deployment 

Model	
  
Upda8ng 

Predictive Modeling Pipeline 
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Final Remarks - 2	


n  Traditional knowledge-driven feature engineering is hard and 
time-consuming, thus is insufficient. 

n  Feature learning, especially recently-developed deep feature 
learning, is data-driven, and has some potential in alleviating 
difficulties faced in FE. 

2 directions worth pursuing:	


²  Integrating domain knowledge into feature learning   (R) 

² Tools that can automate feature discovery   (D) 

1 question to be answered: 
Is deep learning effective for PHM applications?	
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Thank You	

Questions? 

My contact information:  
Dr. Weizhong Yan 
Principal Scientist 

Machine Learning Lab 
GE Global Research Center 

Email: yan@ge.com 
 


